首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   144篇
  免费   7篇
化学   128篇
力学   1篇
数学   2篇
物理学   20篇
  2020年   2篇
  2019年   2篇
  2018年   2篇
  2017年   1篇
  2016年   3篇
  2015年   4篇
  2014年   1篇
  2013年   8篇
  2012年   11篇
  2011年   6篇
  2010年   8篇
  2009年   2篇
  2008年   15篇
  2007年   6篇
  2006年   12篇
  2005年   7篇
  2004年   17篇
  2003年   5篇
  2002年   7篇
  2001年   3篇
  2000年   5篇
  1999年   1篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1982年   3篇
  1980年   2篇
  1979年   2篇
  1978年   2篇
排序方式: 共有151条查询结果,搜索用时 15 毫秒
1.
The oscillation of the interfacial tension and electrical potential at a water/nitrobenzene interface was observed with homologous anionic surfactant molecules, sodium-alkyl-sulfates. Concerning small molecules with a short hydrophobic carbon chain, the oscillation period and amplitude decreased with a decrease of the length of the alkyl chain. On the other hand, when surfactant molecules with a long hydrophobic carbon chain were used, no remarkable periodic oscillation occurred after the first oscillation. In all systems, an interfacial flow by Marangoni convection was observed when the oscillation took place. By monitoring the movement of carbon powder scattered on the liquid/liquid interface with a CCD camera, we could observe that the liquid/liquid interface expanded outward from the area on which the surfactant molecules adsorbed when the oscillation occurred. When the small molecule was used, the speed of expansion of the interface (flow speed) was small and shrinkage followed by expansion of the interface repeatedly occurred. However, when the large molecule was used, the flow speed was large and expansion occurred only one time. These results show that hydrodynamic factors and surface activities are important in chemical oscillation systems.  相似文献   
2.
Molecules in inhomogeneous liquid environments, such as air/liquid, liquid/liquid, solid/liquid interfaces interact with each other specifically, and sometimes form characteristic structures and emerge unique properties. Here, we introduce two newly developed spectroscopic techniques, the total-internal-reflection ultrafast transient lens method (TIR-UTL) and second harmonic generation-coherent vibrational spectroscopy (SHG-CVS), to investigate the characteristic behaviors of molecules in such inhomogeneous environments. TIR-UTL probes the refractive-index change with sub-picosecond resolution and provides information on ultrafast changes in the population, density, and thermal properties, such as temperature increase and energy transfer from the solute molecules to the surrounding solvent molecules. On the other hand, SHG-CVS probes nonlinear susceptibility changes at the interfacial areas, and is expected to provide spectroscopic information on the low-frequency vibrational modes that reflect the corrective motion of the molecules in such an inhomogeneous environment. These new approaches are based on pump-probe techniques utilizing (ultra) short laser pulses. They are expected to provide further information on inhomogeneous environments from the viewpoints of solute-solvent interactions, changes in the molecular orientation, and the corrective motion of molecules at liquid interfaces.  相似文献   
3.
An optical element constructed by stacking a set of binary-phase grating sheets can simulate the functions of optically recorded volume gratings. Our electromagnetic numerical study also shows that if one of the grating sheets is replaced by another one with different grating period, power spectrum of the diffracted wave changes completely with extra diffraction orders. This property will claim strong advantage in security document applications. Analysis of alignment error reveals interesting phenomena concerning to how misalignment affects diffraction efficiency.  相似文献   
4.
To understand the cause of discoloration of the sea laver "nori," which is found in the Ariake Sea, the concentrations of pigments and elements in the normal and discolored laver samples were determined. In the discolored samples, a decrease in all of the pigments, chlorophyll a and carotenoids, and proteinous pigments, phycobiliproteins, was clearly observed. This was accompanied by a decrease in the content of Fe, Zn, Mn, Cu, and P. Good correlations between these elements and chlorophyll a, as well as between these elements and phycobiliproteins, were confirmed, indicating that, in addition to the deficiency of nitrogen and phosphorus, the deficiency of trace elements (Fe, Zn, Mn, and Cu), which are specifically required for photosynthesis, could be a reason for the discoloration of nori. The cause of elemental deficiency is also discussed.  相似文献   
5.
The Bfp-OH, a novel fluorous protecting reagent, was able to be easily prepared. The Bfp group was readily introduced to a carbohydrate, removed in high yield, and recyclable after cleavage. The use of the Bfp group made it possible to synthesize a pentasaccharide by minimal column chromatography purification. Each synthetic intermediate was able to be easily purified only by simple fluorous-organic solvent extraction and monitored by TLC, NMR, and MS.  相似文献   
6.

Background  

The 26S proteasome is the proteolytic machinery of the ubiquitin-dependent proteolytic system responsible for most of the regulated intracellular protein degradation in eukaryotic cells. Previously, we demonstrated meiotic cell cycle dependent phosphorylation of α4 subunit of the 26S proteasome. In this study, we analyzed the changes in the spotting pattern separated by 2-D gel electrophoresis of α subunits during Xenopus oocyte maturation.  相似文献   
7.
A study of the monomer isomerization polymerization of 2-, 3-, and 4-octenes has been made with TiCl3–(C2H5)3Al catalyst at 80°C in comparison with the ordinary polymerization of 1-octene. It was found that all these octenes underwent monomer-isomerization polymerization to give high-molecular-weight homopolymer consisting exclusively of the 1-octene unit. The addition of an isomerization catalyst such as nickel acetylacetonate accelerated this polymerization. The rates of polymerization were found to decrease in the following order: 1-octene > 2-octene > 3-octene > 4-octene. These results indicate that the isomerization proceeded by a stepwise double-bond migration. It was also found that the monomer-isomerization copolymerization of 2-octene and 2-butene occurred under similar conditions and produced copolymers of both 1-olefin units.  相似文献   
8.
9.
Poly(trimethylene carbonate) (PTMC) is a well‐known biodegradable polymer with good biocompatible properties which make it suitable for biomedical applications. Poly(5‐[2‐{2‐(2‐methoxyethoxy)ethyoxy}‐ethoxymethyl]‐5‐methyl‐1,3‐dioxa‐2‐one) (PTMC‐MOE3OM) and copolymers, bearing oligo ethylene glycol (OEG) at the side chain of PTMC backbone, were selected to investigate the cloud point behavior by solvents such as PBS, water, 10% ethanol solution and various ionic strengths. A pH‐responsive copolymer, poly(TMCM‐MOE3OM‐co‐(5‐methyl‐5‐carboxylic‐1,3‐dioxane‐2‐one)) as carboxylic acid carbonate showed a decreased critical temperature at pH 2. Photo‐responsive copolymer, poly(TMCM‐MOE3OM‐co‐coumarin derivatives) bearing 1% and 10% of photo‐induced molecules (7‐[(5‐(5‐methyl‐1,3‐dioxa‐2‐one)methoxy)]‐methoxy coumarin (TMCM‐coumarin)) exhibited a low cloud point because of the hydrophobic moieties. Meanwhile, alternative coumarin polymer including 2% of 4‐methyl‐7‐[(5‐(5‐methyl‐1,3‐dioxa‐2‐one)methoxy)butoxy)]‐methoxy coumarin (TMCM‐4‐methyl‐coumarin) has been successfully synthesized and copolymerized as a novel molecule. The various combinations of monomers were studied and the significant properties were determined via external triggers after copolymerization. This study showed basically synthetic progress toward designs and trivial rationalization of thermoresponsive copolymers close to body temperature. At present, various pendant groups as side part affect to the lower critical solution temperature (LCST) and biodegradable polymer in order to utilize the actual external stimuli application. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3466–3474  相似文献   
10.
In order to test CPT symmetry between antihydrogen and its counterpart hydrogen, the ASACUSA collaboration plans to perform high precision microwave spectroscopy of ground-state hyperfine splitting of antihydrogen atom in-flight. We have developed an apparatus (“cusp trap”) which consists of a superconducting anti-Helmholtz coil and multiple ring electrodes. For the preparation of slow antiprotons and positrons, Penning-Malmberg type traps were utilized. The spectrometer line was positioned downstream of the cusp trap. At the end of the beamline, an antihydrogen beam detector was located, which comprises an inorganic Bismuth Germanium Oxide (BGO) single-crystal scintillator housed in a vacuum duct and surrounding plastic scintillators. A significant fraction of antihydrogen atoms flowing out the cusp trap were detected.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号