首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4359篇
  免费   170篇
  国内免费   22篇
化学   3443篇
晶体学   39篇
力学   37篇
数学   161篇
物理学   871篇
  2023年   24篇
  2021年   45篇
  2020年   54篇
  2019年   68篇
  2018年   36篇
  2017年   39篇
  2016年   91篇
  2015年   76篇
  2014年   99篇
  2013年   178篇
  2012年   279篇
  2011年   297篇
  2010年   164篇
  2009年   146篇
  2008年   286篇
  2007年   265篇
  2006年   254篇
  2005年   279篇
  2004年   250篇
  2003年   210篇
  2002年   131篇
  2001年   111篇
  2000年   70篇
  1999年   64篇
  1998年   32篇
  1997年   43篇
  1996年   38篇
  1995年   40篇
  1994年   31篇
  1993年   40篇
  1992年   47篇
  1991年   39篇
  1990年   45篇
  1989年   30篇
  1988年   22篇
  1987年   42篇
  1986年   23篇
  1985年   46篇
  1984年   51篇
  1983年   25篇
  1982年   40篇
  1981年   47篇
  1980年   36篇
  1979年   56篇
  1978年   33篇
  1977年   33篇
  1976年   24篇
  1975年   20篇
  1974年   22篇
  1973年   21篇
排序方式: 共有4551条查询结果,搜索用时 15 毫秒
1.
2.
Gold nanoparticles with different mean sizes were formed on antimony-doped tin oxide nanocrystals by the temperature-varied deposition-precipitation method (Au/ATO NCs). Au/ATO NCs possess strong absorption in the near-infrared region due to Drude excitation in addition to the localized surface plasmon resonance (LSPR) of AuNPs around 530 nm. Au/ATO NCs show thermally activated catalytic activity for the oxidation of cinnamyl alcohol to cinnamaldehyde by hydrogen peroxide. The catalytic activity increases with a decrease in the mean Au particle size (dAu) at 5.3 nm≤dAu≤8.2 nm. Light irradiation (λex >660 nm, ∼0.5 sun) of Au/ATO NCs increases the rate of reaction by more than twice with ∼95 % selectivity. Kinetic analyses indicated that the striking enhancement of the reaction stems from the rise in the temperature near the catalyst surface of ∼30 K due to the photothermal effect of the ATO NCs.  相似文献   
3.
We report herein a nonbiomimetic strategy for the total synthesis of the plicamine-type alkaloids zephycarinatines C and D. The key feature of the synthesis is a stereoselective reductive radical ipso-cyclization using visible-light-mediated photoredox catalysis. This cyclization enabled the construction of a 6,6-spirocyclic core structure through the addition of a carbon-centered radical onto the aromatic ring. Biological evaluation of zephycarinatines and their derivatives revealed that the synthetic derivative with a keto group displays moderate inhibitory activity against LPS-induced NO production. This approach could offer future opportunities to expand the chemical diversity of plicamine-type alkaloids as well as providing useful intermediates for their syntheses.  相似文献   
4.
This paper describes the reversible control of the size of liquid‐metal nanoparticles under ultrasonication. Gallium was utilized as a liquid metal, which has a melting point of 29.8 °C. Investigating the effects of ultrasonication (power, time, and temperature) on the formation of gallium nanoparticles revealed that the process is similar to the formation of oil in water (O/W) or water in oil (W/O) emulsions, as the temperature significantly affects the size of the gallium nanoparticles (GaNPs). Under ultrasonication, the balance between the break‐up and coalescence of the GaNPs can be adjusted by changing the temperature or adding acid through modulating the natural surface oxide layer (which can be removed with acid) and the stabilizing effect of the surfactant dodecanethiol. Coalescence was predominant at higher temperatures, whereas particle break‐up was found to be predominant at lower temperatures. Furthermore, the change in size was accompanied by a shift in the plasmonic absorption of the GaNPs in the UV region.  相似文献   
5.
The self-assembly of an amide-functionalized dithienyldiketopyrrolopyrrole (DPP) dye in aqueous media was achieved through seed-initiated supramolecular polymerization. Temperature- and time-dependent studies showed that the spontaneous polymerization of the DPP derivative was temporally delayed upon cooling the monomer solution in a methanol/water mixture. Theoretical calculations revealed that an amide-functionalized DPP derivative adopts an energetically favorable folded conformation in the presence of water molecules due to hydration. This conformational change is most likely responsible for the trapping of monomers in the initial stage of the cooperative supramolecular polymerization in aqueous media. However, the monomeric species can selectively interact with externally added fragmented aggregates as seeds through concerted π-stacking and hydrogen-bonding interactions. Consequently, the time course of the supramolecular polymerization and the morphology of the aggregated state can be controlled, and one-dimensional fibers that exhibit a J-aggregate-like bathochromically shifted absorption band can be obtained.  相似文献   
6.
The Mills reaction and cyclization of readily available 2-aminobenzyl alcohols and nitrosobenzenes using thionyl bromide provided 2H-indazoles in up to 88 % yields. In the metal-free process, acetic acid played a crucial role for the both Mills reaction and cyclization. A brominated 2H-indazole could also be obtained through the one-pot sequence.  相似文献   
7.
Crystal structures of a series of organic–inorganic hybrid gold iodide perovskites, formulated as A2[AuII2][AuIIII4] [A=methylammonium (MA) ( 1 ) and formamidinium (FA) ( 2 )], A′2[I3]1−x[AuII2]x[AuIIII4] [A′=imidazolium (IMD) ( 3 ), guanidinium (GUA) ( 4 ), dimethylammonium (DMA) ( 5 ), pyridinium (PY) ( 6 ), and piperizinium (PIP) ( 7 )], systematically changed depending on the cation size. In addition, triiodide (I3) ions were partly incorporated into the AuI2 sites of 3 – 7 , whereas they were not incorporated into those of 1 and 2 . Such a difference comes from the size of the organic cation. Optical absorption spectra showed characteristic intervalence charge-transfer bands from AuI to AuIII species, and the optical band gap increased as the size of the cation became larger.  相似文献   
8.
Vaccines typically contain an antigen, delivery system (vehicle), and adjuvant, all of which contribute to inducing a potent immune response. Consequently, design of new vaccines is difficult, because the contributions and interactions of these components are difficult to distinguish. Here, it is aimed to develop an easy‐to‐use, non‐immunogenic, injectable depot system for sustained antigen release that will be suitable for assessing the efficacy of prolonged antigen exposure per se for inducing an immune response. This should mimic real‐life infections. Recombinant elastin‐like polypeptides with periodic cysteine residues (cELPs) are selected, which reportedly show little or no immunogenicity, as carriers and tetanus toxoid (Ttd) as an antigen. After subcutaneous injection of the mixture, cELP rapidly forms a disulfide cross‐linked hydrogel in situ, within which Ttd is physically incorporated, affording a biodegradable antigen depot. A series of Ttd‐containing hydrogels is examined. A single injection induces high levels of tetanus antibody with high avidity for at least 20 weeks in mice. The chain length of cELP proves critical, whereas differences in hydrophobicity has little effect, although hydrophilic cELPs are more rapidly biodegraded. This system's ability to distinguish the contribution of sustained antigen release to antibody induction should be helpful for rational design of next‐generation vaccines.  相似文献   
9.
ABSTRACT

QM(UB3LYP)/MM(AMBER) calculations were performed for the locations of the transition structure (TS) of the oxygen–oxygen (O–O) bond formation in the S4 state of the oxygen-evolving complex (OEC) of photosystem II (PSII). The natural orbital (NO) analysis of the broken-symmetry (BS) solutions was also performed to elucidate the nature of the chemical bonds at TS on the basis of several chemical indices defined by the occupation numbers of NO. The computational results revealed a concerted bond switching (CBS) mechanism for the oxygen–oxygen bond formation coupled with the one-electron transfer (OET) for water oxidation in OEC of PSII. The orbital interaction between the σ-HOMO of the Mn(IV)4–O(5) bond and the π*-LUMO of the Mn(V)1=O(6) bond plays an important role for the concerted O–O bond formation for water oxidation in the CaMn4O6 cluster of OEC of PSII. One electron transfer (OET) from the π-HOMO of the Mn(V)1=O(6) bond to the σ*-LUMO of the Mn(IV)4–O(5) bond occurs for the formation of electron transfer diradical, where the generated anion radical [Mn(IV)4–O(5)]-? part is relaxed to the ?Mn(III)4?…?O(5)- structure and the cation radical [O(6)=Mn(V)1]+ ? part is relaxed to the +O(6)–Mn(IV)1? structure because of the charge-spin separation for the electron-and hole-doped Mn–oxo bonds. Therefore, the local spins are responsible for the one-electron reductions of Mn(IV)4->Mn(III)4 and Mn(V)1->Mn(IV)1. On the other hand, the O(5)- and O(6)+ sites generated undergo the O–O bond formation in the CaMn4O6 cluster. The Ca(II) ion in the cubane- skeleton of the CaMn4O6 cluster assists the above orbital interactions by the lowering of the orbital energy levels of π*-LUMO of Mn(V)1=O(6) and σ*-LUMO of Mn(IV)4–O(5), indicating an important role of its Lewis acidity. Present CBS mechanism for the O–O bond formation coupled with one electron reductions of the high-valent Mn ions is different from the conventional radical coupling (RC) and acid-base (AB) mechanisms for water oxidation in artificial and native photosynthesis systems. The proton-coupled electron transfer (PC-OET) mechanism for the O–O bond formation is also touched in relation to the CBS-OET mechanism.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号