首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1981篇
  免费   107篇
  国内免费   13篇
化学   1408篇
晶体学   8篇
力学   44篇
数学   166篇
物理学   475篇
  2023年   11篇
  2022年   7篇
  2021年   31篇
  2020年   30篇
  2019年   36篇
  2018年   21篇
  2017年   23篇
  2016年   61篇
  2015年   62篇
  2014年   68篇
  2013年   117篇
  2012年   108篇
  2011年   140篇
  2010年   80篇
  2009年   76篇
  2008年   115篇
  2007年   114篇
  2006年   91篇
  2005年   77篇
  2004年   77篇
  2003年   53篇
  2002年   55篇
  2001年   39篇
  2000年   57篇
  1999年   24篇
  1998年   34篇
  1997年   22篇
  1996年   24篇
  1995年   32篇
  1994年   31篇
  1993年   33篇
  1992年   28篇
  1991年   36篇
  1990年   32篇
  1989年   21篇
  1988年   24篇
  1987年   19篇
  1986年   19篇
  1985年   26篇
  1984年   25篇
  1983年   17篇
  1982年   16篇
  1981年   17篇
  1980年   10篇
  1979年   6篇
  1978年   6篇
  1977年   11篇
  1976年   7篇
  1975年   7篇
  1974年   6篇
排序方式: 共有2101条查询结果,搜索用时 125 毫秒
1.
The existence of a homoclinic orbit in dynamical systems implies chaotic behaviour with positive entropy. In this work, we determine explicitly the Markov shifts associated to certain Smale horseshoe homoclinic orbits which allow us to compute a lower bound for the topological entropy that such a system can have. It is done associating a heteroclinic orbit which belongs to the same isotopy class and then determining the Markov partition of the dynamical core of an end periodic mapping.  相似文献   
2.
A spiropyran‐based switchable ligand isomerizes upon reaction with lanthanide(III) precursors to generate complexes with an unusual N3O5 coordination sphere. The air‐stable dysprosium(III) complex shows a hysteresis loop at 2 K and a very strong axial magnetic anisotropy generated by the merocyanine phenolate donor.  相似文献   
3.
Cationic and neutral silver(I)–L complexes (L=Buchwald‐type biaryl phosphanes) with nitrogen co‐ligands or organosulfonate counter ions have been synthesised and characterised through their structural and spectroscopic properties. At room temperature, both cationic and neutral silver(I)–L complexes are extremely active catalysts in the promotion of the single and double A3 coupling of terminal (di)alkynes, pyrrolidine and formaldehyde. In addition, the aza‐Diels–Alder two‐ and three‐component coupling reactions of Danishefsky’s diene with an imine or amine and aldehyde are efficiently catalysed by these cationic or neutral silver(I)–L complexes. The solvent influences the catalytic performance due to limited complex solubility or solvent decomposition and reactivity. The isolation of new silver(I)–L complexes with reagents as ligands lends support to mechanistic proposals for such catalytic processes. The activity, stability and metal–distal arene interaction of these silver(I)–L catalysts have been compared with those of analogous cationic gold(I) and copper(I) complexes.  相似文献   
4.
This work presents the implementation of a high‐order, finite‐volume scheme suitable for rotor flows. The formulation is based on the variable extrapolation MUSCL‐scheme, where high‐order spatial accuracy (up to fourth‐order) is achieved using correction terms obtained through successive differentiation. A variety of results are presented, including 2‐ and 3‐dimensional test cases. Results with the proposed scheme, showed better wake and higher resolution of vortical structures compared with the standard MUSCL, even when coarse meshes were employed. The method was also demonstrated for 3‐dimensional unsteady flows using overset and moving grids for the UH‐60A rotor in forward flight and the Enhanced Rotorcraft Innovative Concept Achievement tiltrotor in aeroplane mode. For medium grids, the present method adds reasonable CPU and memory overheads and offers good accuracy on relatively coarse grids.  相似文献   
5.
The cationic complex [(JohnPhos–Au)3(acetylide)][SbF6] (JohnPhos=(2-biphenyl)di-tert-butylphosphine, L1) has been characterised structurally and features an acetylide–trigold(I)–JohnPhos system; the trinuclear–acetylide unit, coordinated to the monodentate bulk phosphines, adopts an unprecedented μ,η121 coordination mode with an additional interaction between distal phenyl rings and gold centres. Other cationic σ,π-[(gold(I)L1)2] complexes have also been isolated. The reaction of trimethylsilylacetylene with various alcohols (iPrOH, nBuOH, n-HexOH) catalysed by cationic [AuIL1][SbF6] complexes in CH2Cl2 at 50 °C led to the formation of acetaldehyde acetals with a high degree of chemo- and regioselectivity. The reaction mechanism was studied, and several organic and inorganic intermediates have been characterised. A comparative study with the analogous cationic [CuIL1][PF6] complex revealed different behaviour; the copper metal is lost from the coordination sphere leading to the formation of cationic vinylphosphonium and copper nanoparticles. Additionally, a new catalytic approach for the formation of this high-value cationic vinylphosphonium has been established.  相似文献   
6.
Hydrogenation of multiple bonds are among the most general and important organic reactions. Typical heterogeneous catalysts are based on transition metal nanoparticles, including noble metals. Data are presented here showing that metal nodes of MIL-101(Cr) and UiO-66 in the absence of occluded metal nanoparticles can promote hydrogenation of polarized X=Y double bonds of nitro and carbonyl groups. The catalytic activity is a function of the composition of the metal node and the organic linker. It is proposed that the reaction mechanism is based on the operation of frustrated Lewis acid/base pairs.  相似文献   
7.
Trace metals are required in the body as they play a significant role in several biochemical processes. Moreover, certain heavy metals are beneficial at appropriate levels. Copper (Cu), for example, is essential for red blood cell formation, bone strength, and infant growth. Despite these fundamental roles, Cu can become toxic at high levels. Other heavy metals such as lead (Pb), cadmium (Cd), manganese (Mn), and mercury (Hg), have been identified to cause acute and chronic health complications. For these reasons, rapid, real-time quantification of such metals in biological media is of interest to improving human health outcomes. Electrochemical methods offer numerous advantages, such as portability, capability to be miniaturized, low cost, and ease-of-use. In this review, we examine recent developments in electrochemical sensing for the detection of heavy metals in biological media. To meet the requirements for inclusion in this review, the electrochemical sensor must have been evaluated in biological media (blood, serum, sweat, saliva, urine, brain tissue/cells). Several applications are explored to examine recent advancements in electrochemical sensing within these matrices. Addressing the challenges through materials, device, and system innovations, it is expected that electrochemical sensing of heavy metals in biological media will facilitate future diagnoses and treatments in healthcare.  相似文献   
8.
Here, we report multiwalled carbon nanotubes (MWCNTs) functionalized with γ-cyclodextrins (γCD) as a novel electrochemical strategy for Rutin determination, showing superior performance than β-cyclodextrins (βCD) modified MWCNTs, suggesting an adequate environment for host-guest interactions. Under optimized conditions, the sensor showed a linear range of 39–975 nmol L−1 and a limit of detection of 7 nmol L−1. When tested with quercetin, catechin, and caffeine, the platform presented high selectivity with an interference response <10 %. The method was employed to quantify Rutin in spiked pharmaceutical and herbal extracts, providing recovery of 93–98.4 %. Also, HPLC-PDA confirmed the method‘s accuracy.  相似文献   
9.
Aptamers constitute an emerging class of molecules designed and selected to recognize any given target that ranges from small compounds to large biomolecules, and even cells. However, the underlying physicochemical principles that govern the ligand‐binding process still have to be clarified. A major issue when dealing with short oligonucleotides is their intrinsic flexibility that renders their active conformation highly sensitive to experimental conditions. To overcome this problem and determine the best experimental parameters, an approach based on the design‐of‐experiments methodology has been developed. Here, the focus is on DNA aptamers that possess high specificity and affinity for small molecules, L ‐tyrosinamide, and adenosine monophosphate. Factors such as buffer, pH value, ionic strength, Mg2+‐ion concentration, and ligand/aptamer ratio have been considered to find the optimal experimental conditions. It was then possible to gain new insight into the conformational features of the two ligands by using ligand‐observed NMR spectroscopic techniques and molecular mechanics.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号