首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The ortho‐metallation product of the reaction of (±)‐amphetamine with gold(III) chloride, [D,L‐2‐(2‐aminopropyl)phenyl‐κ2N,C1]dichloridogold(III), [Au(C9H12N)Cl2], and the two salts resulting from crystallization of (+)‐methamphetamine with gold(III) chloride, D‐methyl(1‐phenylpropan‐2‐yl)azanium tetrachloridoaurate(III), (C10H16N)[AuCl4], and of (±)‐ephedrine with gold(III) chloride, D,L‐(1‐hydroxy‐1‐phenylpropan‐2‐yl)(methyl)azanium tetrachloridoaurate(III), (C10H16NO)[AuCl4], have different structures. The first makes a bidentate complex directly with a dichloridogold(III) group, forming a six‐membered ring structure; the second and third each form a salt with [AuCl4] (each has two formula units in the asymmetric unit). The organic components are all members of the same class of stimulants that are prevalent in illicit drug use. These structures are important contributions to the understanding of the microcrystal tests for these drugs that have been employed for well over 100 years.  相似文献   

2.
Improving our comprehension of diverse CO2 activation pathways is of vital importance for the widespread future utilization of this abundant greenhouse gas. CO2 activation by uranium(III) complexes is now relatively well understood, with oxo/carbonate formation predominating as CO2 is readily reduced to CO, but isolated thorium(III) CO2 activation is unprecedented. We show that the thorium(III) complex, [Th(Cp′′)3] ( 1 , Cp′′={C5H3(SiMe3)2‐1,3}), reacts with CO2 to give the mixed oxalate‐carboxylate thorium(IV) complex [{Th(Cp′′)22‐O2C{C5H3‐3,3′‐(SiMe3)2}]}2(μ‐κ22‐C2O4)] ( 3 ). The concomitant formation of oxalate and carboxylate is unique for CO2 activation, as in previous examples either reduction or insertion is favored to yield a single product. Therefore, thorium(III) CO2 activation can differ from better understood uranium(III) chemistry.  相似文献   

3.
A pyrrole‐cleaving modification to transform boron(III) meso ‐triphenylsubporphyrin into boron(III) meso ‐triphenylsubchlorophin has been developed. Boron(III) subchlorophins thus synthesized show absorption and fluorescence spectra that are roughly similar to those of boron(III) subchlorins, but B ‐methoxy boron(III) subchlorophin showed considerably intensified fluorescence and a small Stokes shift. Peripheral modification reactions of B ‐phenyl boron(III) subchlorophin such as regioselective nitration with Cu(NO3)2⋅3 H2O, ipso ‐substitution reactions of boron(III) α‐nitrosubchlorophin with CsF and CsCl, and Pd‐catalyzed cross‐coupling reactions of boron(III) α‐chlorosubchlorophin with arylacetylenes, have been also explored to tune the optical properties of subchlorophins.  相似文献   

4.
《Electroanalysis》2003,15(2):97-102
The oxidation of dimethyl sulfoxide (DMSO) to dimethyl sulfone (DMSO2) is representative of numerous anodic oxygen‐transfer reactions of organosulfur compounds that suffer from slow kinetics at noble metal electrodes. Anodic voltammetric data for DMSO are examined at various RuO2‐film electrodes prepared by thermal deposition on titanium substrates. The response for DMSO is slightly larger at RuO2 films prepared in a flame as compared with films prepared in a furnace; however, temperature is more easily controlled in the furnace. Doping of the RuO2 films with Fe(III) further improves the sensitivity of anodic response for DMSO. Optimal response is obtained at an Fe(III)‐doped RuO2‐film electrode prepared using a deposition solution of 50 mM RuCl3 and 10 mM FeCl3 in a 1 : 1 mixture of isopropanol and 12 M HCl at an annealing temperature of 450 °C. The Levich plot (i vs. ω1/2) and Koutecky‐Levich plot (1/i vs. 1/ω1/2) of amperometric data for the oxidation of DMSO at an Fe(III)‐doped RuO2‐film electrode configured as a rotated disk are consistent with an anodic response controlled by mass‐transport processes at low rotational velocities. Flow injection data demonstrate that Fe(III)‐doped RuO2‐film electrodes exhibit detection capability for methionine and cysteine in addition to DMSO. Detection limits for 100‐μL injections of the three compounds are ca. 3.2×10?4 mM, i.e., ca. 32 pmol.  相似文献   

5.
While six‐coordinate iron(III) porphyrin complexes with pyridine N‐oxides as axial ligands have been studied as they exhibit rare spin‐crossover behavior, studies of five‐coordinate iron(III) porphyrin complexes including neutral axial ligands are rare. A five‐coordinate pyridine N‐oxide–5,10,15,20‐tetraphenylporphyrinate–iron(III) complex, namely (pyridine N‐oxide‐κO)(5,10,15,20‐tetraphenylporphinato‐κ4N,N′,N′′,N′′′)iron(III) hexafluoroantimonate(V) dichloromethane disolvate, [Fe(C44H28N4)(C5H5NO)][SbF6]·2CH2Cl2, was isolated and its crystal structure determined in the space group P. The porphyrin core is moderately saddled and the Fe—O—N bond angle is 122.08 (13)°. The average Fe—N bond length is 2.03 Å and the Fe—ONC5H5 bond length is 1.9500 (14) Å. This complex provides a rare example of a five‐coordinate iron(III) porphyrin complex that is coordinated to a neutral organic ligand through an O‐monodentate binding mode.  相似文献   

6.
Studying the axial ligation behavior of metalloporphyrins with nitrogenous bases helps to better understand not only the biological function of heme‐based protein systems, but also the catalytic properties of porphyrin‐based reaction sites in other biomimetic synthetic support environments. Unlike iron porphyrin complexes, little is known about the axial ligation behavior of Mn porphyrins, particularly in the solid state with Mn in the +3 oxidation state. Here, we present the syntheses and crystal and molecular structures of three new high‐spin manganese(III) porphyrin complexes with the different amine‐based axial ligands imidazole (im), piperidine (pip), and 1,4‐diazabicyclo[2.2.2]octane (DABCO), namely bis(imidazole)(5,10,15,20‐tetraphenylporphyrinato)manganese(III) chloride chloroform disolvate, [Mn(C44H28N4)(C3H4N2)2]Cl·2CHCl3 or [Mn(TPP)(im)2]Cl·2CHCl3 (TPP = 5,10,15,20‐tetraphenylporphyrin), (I), bis(piperidine)(5,10,15,20‐tetraphenylporphyrinato)manganese(III) chloride, [Mn(C44H28N4)(C5H11N)2]Cl or [Mn(TPP)(pip)2]Cl, (II), and chlorido(1,4‐diazabicyclo[2.2.2]octane)(5,10,15,20‐tetraphenylporphyrin)manganese(III)–1,4‐diazabicyclo[2.2.2]octane–toluene–water (4/4/4/1), [Mn(C44H28N4)Cl(C6H12N2)]·C6H12N2·C7H8·0.25H2O or [Mn(TPP)Cl(DABCO)]·(DABCO)·(toluene)·0.25H2O, (IV). A fourth complex, chlorido(pyridine)(5,10,15,20‐tetraphenylporphryinato)manganese(III) pyridine disolvate, [Mn(C44H28N4)Cl(C5H5N)]·2C5H5N or [Mn(TPP)Cl(py)]·2(py), (III), acquired using different crystallization methods from published data, is also reported and compared to the previous structures.  相似文献   

7.
Mononuclear metal–dioxygen species are key intermediates that are frequently observed in the catalytic cycles of dioxygen activation by metalloenzymes and their biomimetic compounds. In this work, a side‐on cobalt(III)–peroxo complex bearing a macrocyclic N‐tetramethylated cyclam (TMC) ligand, [CoIII(15‐TMC)(O2)]+, was synthesized and characterized with various spectroscopic methods. Upon protonation, this cobalt(III)–peroxo complex was cleanly converted into an end‐on cobalt(III)–hydroperoxo complex, [CoIII(15‐TMC)(OOH)]2+. The cobalt(III)–hydroperoxo complex was further converted to [CoIII(15‐TMC‐CH2‐O)]2+ by hydroxylation of a methyl group of the 15‐TMC ligand. Kinetic studies and 18O‐labeling experiments proposed that the aliphatic hydroxylation occurred via a CoIV–oxo (or CoIII–oxyl) species, which was formed by O? O bond homolysis of the cobalt(III)–hydroperoxo complex. In conclusion, we have shown the synthesis, structural and spectroscopic characterization, and reactivities of mononuclear cobalt complexes with peroxo, hydroperoxo, and oxo ligands.  相似文献   

8.
The synthesis, crystal structure, and magnetic properties of a new hexanuclear manganese(III) complex are reported. The complex [LiMn6(L)6]OH · 2MeCN · 4MeOH · 1.5H2O (LiH2L = lithium 2‐{[bis(2‐hydroxyethyl)amino]methyl}‐4‐methylphenate) ( 1 ), was obtained from the reaction of one equivalent of LiH2L with Mn(OAc)2 in MeCN/MeOH (v:v/1:1). Single‐crystal X‐ray diffraction shows that six octahedrally coordinated manganese(III) ions define a ring and are linked by twelve bridging oxygen atoms from alkoxo groups. The resulting [Mn6(OCH2)12] skeleton has the remarkable property of acting as a host for a octahedrally coordinated lithium ion in the center of the ring. Variable‐temperature solid‐state magnetic susceptibility studies of 1 in the temperature range 2.0–300 K reveal that the complex has a S = 12 ground state spin, showing ferromagnetic exchange interactions between the constituent manganese(III) ions.  相似文献   

9.
We synthesized a Yb(III)‐incorporated microporous polymer (Yb‐ADA) and studied its gas adsorption property and catalytic activity. The adamantane‐based porous polymer (ADA) was obtained from an ethynyl‐functionalized adamantane derivative and 2,5‐dibromoterephthalic acid through Sonogashira–Hagihara cross‐coupling. ADA had two carboxyl groups which were used for Yb(III) coordination under basic conditions. The Brunauer‐Emmett‐Teller (BET) surface area of ADA was 970 m2 g?1. As Yb(III) ions were incorporated into ADA, the surface area of the polymer (Yb‐ADA) was reduced to 885 m2 g?1. However, Yb‐ADA exhibited a significantly enhanced CO2 adsorption capacity despite the reduction of surface area. The CO2 uptakes of ADA and Yb‐ADA were 1.56 and 2.36 mmol g?1 at 298 K, respectively. The H2 uptake of ADA also increased after coordination with Yb(III) from 1.15 to 1.40 wt % at 77 K. Yb‐ADA showed high catalytic activity in the acetalization of 4‐bromobenzaldehyde and furfural with trimethyl orthoformate and could be reused after recovery without severe loss of activity. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 5291–5297  相似文献   

10.
Low‐coordinate organoCr(III) complexes supported by the silylamido ligand –N(SiMe3)DIPP (DIPP = 2,6‐diisopropylphenyl) are ethylene polymerization catalyst precursors without the need of additional cocatalyst. The reaction of CrCl3(THF)3 with 3 or 2 equiv. of LiN(SiMe3)DIPP yields either a four‐membered cyclometalated Cr complex or Cr[N(SiMe3)DIPP]2Cl, respectively, with no trace of Cr[N(SiMe3)DIPP]3. Addition of 1 equiv. of LiN(SiMe3)DIPP to Cr[N(SiMe3)DIPP]2Cl also leads to the four‐membered metallacycle, which upon heating transforms to a new six‐membered Cr metallacycle, likely via a σ‐bond metathesis step. Cr[N(SiMe3)DIPP]2Cl can be readily converted to bis(amido)Cr(III) vinyl and alkyl complexes Cr[N(SiMe3)DIPP]2R (R = vinyl, Bn, and Me). All of these structurally characterized low‐coordinate Cr(III) complexes with a Cr–C bond initiate the polymerization of ethylene in the absence of activators or cocatalysts, producing ultra‐high‐molecular weight polyethylene.  相似文献   

11.
meso‐Nitrosubporphyrinatoboron(III) was synthesized by nitration of meso‐free subporphyrin with AgNO2/I2. The subsequent reduction with a combination of NaBH4 and Pd/C gave meso‐aminosubporphyrinatoboron(III). meso‐Nitro‐ and meso‐amino‐groups significantly influenced the electronic properties of subporphyrin, which has been confirmed by NMR and UV/Vis spectra, electrochemical analysis, and DFT calculations. Oxidation of meso‐aminosubporphyrinatoboron(III)s with PbO2 cleanly gave meso‐to‐meso azosubporphyrinatoboron(III)s that exhibited almost coplanar conformations and large electronic interaction through the azo‐bridge.  相似文献   

12.
The interaction between trivalent lanthanide ions and poly(1,4,7,10,13‐pentaoxacyclopentadecan‐2‐yl‐methyl methacrylate), PCR5, in aqueous solution and in the solid state have been studied. In aqueous solution, evidence of a weak interaction between the lanthanides and PCR5 comes from the small red shift of the Ce(III) emission spectra and the slight broadening of the Gd(III) EPR spectra. From the Tb(III) lifetimes in the presence of H2O and D2O the loss of one or two water coordinated molecules is confirmed when Tb(III) is bound to PCR5. An association constant of the order of 200 M?1 was obtained for a 1:1 (lanthanide:15‐crown‐5) complex from the shift of the polymer NMR signals induced by Tb(III). A similar association constant is obtained from the differences of the molar conductivity of Ce(III) solution at various concentrations in presence and absence of PCR5. When Tb(III) is adsorbed on PCR5 membranes, lifetime experiments in H2O and D2O confirm the loss of 5 or 6 water coordinated molecules indicating that in solid state the lanthanide(III)‐PCR5 interaction is stronger than in solution. The adsorption of Ce(III) in PCR5 membranes shows a Langmuir type isotherm, from which an equilibrium constant of 39 M?1 has been calculated. SEM shows that the membrane morphology is not much affected by lanthanide adsorption. Support for lanthanide ion–crown interactions comes from ab initio calculations on 15‐crown‐5/La(III) complex. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1788–1799, 2007  相似文献   

13.
Complexes of 4,10‐bis(phosphonomethyl)‐1,4,7,10‐tetraazacyclododecane‐1,7‐diacetic acid (trans‐H6do2a2p, H6 L ) with transition metal and lanthanide(III) ions were investigated. The stability constant values of the divalent and trivalent metal‐ion complexes are between the corresponding values of H4dota and H8dotp complexes, as a consequence of the ligand basicity. The solid‐state structures of the ligand and of nine lanthanide(III) complexes were determined by X‐ray diffraction. All the complexes are present as twisted‐square‐antiprismatic isomers and their structures can be divided into two series. The first one involves nona‐coordinated complexes of the large lanthanide(III) ions (Ce, Nd, Sm) with a coordinated water molecule. In the series of Sm, Eu, Tb, Dy, Er, Yb, the complexes are octa‐coordinated only by the ligand donor atoms and their coordination cages are more irregular. The formation kinetics and the acid‐assisted dissociation of several LnIII–H6 L complexes were investigated at different temperatures and compared with analogous data for complexes of other dota‐like ligands. The [Ce( L )(H2O)]3? complex is the most kinetically inert among complexes of the investigated lanthanide(III) ions (Ce, Eu, Gd, Yb). Among mixed phosphonate–acetate dota analogues, kinetic inertness of the cerium(III) complexes is increased with a higher number of phosphonate arms in the ligand, whereas the opposite is true for europium(III) complexes. According to the 1H NMR spectroscopic pseudo‐contact shifts for the Ce–Eu and Tb–Yb series, the solution structures of the complexes reflect the structures of the [Ce(H L )(H2O)]2? and [Yb(H L )]2? anions, respectively, found in the solid state. However, these solution NMR spectroscopic studies showed that there is no unambiguous relation between 31P/1H lanthanide‐induced shift (LIS) values and coordination of water in the complexes; the values rather express a relative position of the central ions between the N4 and O4 planes.  相似文献   

14.
The behavior and conditions of liquid‐liquid extraction‐separation of Fe(III) by ammonium thiocyanate‐H2O‐n‐propyl alcohol system in the presence of NaCl were studied, and the possible reactive mechanism of extraction of Fe(III) was deduced. The study showed that, in the presence of a given amount of NaCl, phases were separated thoroughly between n‐propyl alcohol and water. In the process of phase separation, the complex [Fe(SCN)n](3‐n) formed by NH4SCN and Fe(III) was quantitatively extracted into the n‐propyl alcohol phase. The extracted Fe(III) exists in the n‐propyl alcohol phase mainly as the forms of Fe(SCN)2+ and Fe(SCN)3. Also, the relationship between extraction yield of Fe(III) and the amount of NH4SCN agreed well with the quadratic equation E = 0.54 + 58.14x ? 8.39x2 (E and x represent the recovery rate of Fe(III) and the volume (mL) of 0.1 M NH4SCN respectively). The quadratic R‐Square is 0.9990. With this method, Fe(III) can be completely separated from Co(II), Ni(II), Mn(II), Al(III), Bi(III) and Cd(II) at pH 1.0?2.0. The present method was applied in determining Fe(III) in samples with satisfactory results such as relative standard deviation from 2.06% to 2.89% and recovery rate in the range of 98.4?101.4%.  相似文献   

15.
Four Ln(III) complexes based on a new nitronyl nitroxide radical have been synthesized and structurally characterized: {Ln(hfac)3[NITPh(MeO)2]2} (Ln = Eu( 1 ), Gd( 2 ), Tb( 3 ), Dy( 4 ); NITPh(MeO)2 = 2‐(3′,4′‐dimethoxyphenyl)‐4,4,5,5‐tetramethylimidazoline‐1‐oxyl‐3‐oxide; hfac = hexafluoroacetylacetonate). The single‐crystal X‐ray diffraction analysis shows that these complexes have similar mononuclear trispin structures, in which central Ln(III) ion is eight‐coordinated by two O‐atoms from two nitroxide groups and six O‐atoms from three hfac anions. The variable temperature magnetic susceptibility study reveals that there exist ferromagnetic interactions between Gd(III) and the radicals, and antiferromagnetic interactions between two radicals (JGd‐Rad = 3.40 cm?1, JRad‐Rad = ?9.99 cm?1) in complex 2 . Meanwhile, antiferromagnetic interactions are estimated between Eu(III) (or Dy(III)) and radicals in complexes 1 and 4 , and ferromagnetic interaction between Tb(III) and radicals in complex 3 , respectively.  相似文献   

16.
In N,N,N′,N′‐tetraethyl‐N′′‐(4‐fluorobenzoyl)phosphoric triamide, C15H25FN3O2P, (I), and N‐(2,6‐difluorobenzoyl)‐N′,N′′‐bis(4‐methylpiperidin‐1‐yl)phosphoric triamide, C19H28F2N3O2P, (II), the C—N—C angle at each tertiary N atom is significantly smaller than the two P—N—C angles. For the other new structure, N,N′‐dicyclohexyl‐N′′‐(2‐fluorobenzoyl)‐N,N′‐dimethylphosphoric triamide, C21H33FN3O2P, (III), one C—N—C angle [117.08 (12)°] has a greater value than the related P—N—C angle [115.59 (9)°] at the same N atom. Furthermore, for most of the analogous structures with a [C(=O)NH]P(=O)[N(C)(C)]2 skeleton deposited in the Cambridge Structural Database [CSD; Allen (2002). Acta Cryst. B 58 , 380–388], the C—N—C angle is significantly smaller than the two P—N—C angles; exceptions were found for four structures with the N‐methylcyclohexylamide substituent, similar to (III), one structure with the seven‐membered cyclic amide azepan‐1‐yl substituent and one structure with an N‐methylbenzylamide substituent. The asymmetric units of (I), (II) and (III) contain one molecule, and in the crystal structures, adjacent molecules are linked via pairs of N—H...O=P hydrogen bonds to form dimers.  相似文献   

17.
Fe (III)‐grafted Bi2MoO6 nanoplates (Fe (III)/BMO) with varying small quantity of Fe (III) clusters modification were fabricated through a simple hydrothermal and impregnation process. The characterization results indicate that the modification of Fe (III) clusters on the surface of Bi2MoO6 nanoplates with intimate interfacial contact is beneficial to the expansion of visible light absorption range and the separation of photoinduced carriers during the interface charge transfer process. The photocatalytic properties of the samples were studied by degradation of tetracycline (TC) and selective aerobic oxidation of biomass‐derived chemical 5‐hydroxymethylfuraldehyde (HMF) under visible light. The 1.5 wt% Fe (III) clusters‐grafted Bi2MoO6 nanoplates exhibited optimum photocatalytic activity, which is the TC degradation kinetic rate constant is 5.3 times higher than that of bare BMO, and the highest HMF conversion of 32.62% can be obtained with a selectivity of 95.30%. Furthermore, a possible visible light photocatalysis mechanism over Fe (III)/BMO sample has been proposed. This study may supply some insight for the development of visible‐light‐driven Bi2MoO6‐based photocatalysts applicable to both environmental remediation and biomass‐derived chemical transformation.  相似文献   

18.
A series of metal‐Al2O3 catalysts were prepared simply by the conventional impregnation with Al2O3 and metal chlorides, which were applied to the dehydration of fructose to 5‐hydroxymethylfurfural (HMF). An agreeable HMF yield of 93.1% was achieved from fructose at mild conditions (100°C and 40 min) when employing Cr(III)‐Al2O3 as catalyst in 1‐butyl‐3‐methylimidazolium chloride ([Bmim]Cl). The Cr(III)‐Al2O3 catalyst was characterized via XRD, DRS and Raman spectra and the results clarified the interaction between the Cr(III) and the alumina support. Meanwhile, the reaction solvents ([Bmim]Cl) collected after 1st reaction run and 5th reaction run were analyzed by ICP‐OES and LC‐ITMS and the results confirmed that no Cr(III) ion was dropped off from the alumina support during the fructose dehydration. Notably, Cr(III)‐Al2O3 catalyst had an excellent catalytic performance for glucose and sucrose and the HMF yields were reached to 73.7% and 84.1% at 120°C for 60 min, respectively. Furthermore, the system of Cr(III)‐Al2O3 and [Bmim]Cl exhibited a constant stability and activity at 100°C for 40 min and a favorable HMF yield was maintained after ten recycles.  相似文献   

19.
Tetraaqua(18‐crown‐6)cerium(III) hexacyanoferrate(III) dihydrate, [Ce(C12H24O6)(H2O)4][Fe(CN)6]·2H2O, and tetraaqua(18‐crown‐6)neodymium(III) hexacyanoferrate(III) dihydrate, [Nd(C12H24O6)(H2O)4][Fe(CN)6]·2H2O, are isomorphous and isostructural in the C2/c space group, where the cations, which contain ten‐coordinate lanthanoid centres, lie across twofold rotation axes and the anions lie across inversion centres. In these compounds, an extensive series of O—H...O and O—H...N hydrogen bonds links the components into a continuous three‐dimensional framework. Triaqua(18‐crown‐6)lanthanoid(III) hexacyanoferrate(III) dihydrate, [Ln(C12H24O6)(H2O)3][Fe(CN)6]·2H2O, where Ln = Sm, Eu, Gd or Tb, are all isomorphous and isostructural in the P space group, as are triaqua(18‐crown‐6)gadolinium(III) hexacyanochromate(III) dihydrate, [Gd(C12H24O6)(H2O)3][Cr(CN)6]·2H2O, and triaqua(18‐crown‐6)gadolinium(III) hexacyanocobaltate(III) dihydrate, [Gd(C12H24O6)(H2O)3][Co(CN)6]·2H2O. In these compounds, there are two independent anions, both lying across inversion centres, and the lanthanoid centres exhibit nine‐coordination; in the crystal structures, an extensive series of hydrogen bonds links the components into a three‐dimensional framework.  相似文献   

20.
We report the synthesis of the novel heterometallic complex [Fe3Cr(L)2(dpm)6]?Et2O ( Fe3CrPh ) (Hdpm=dipivaloylmethane, H3L=2‐hydroxymethyl‐2‐phenylpropane‐1,3‐diol), obtained by replacing the central iron(III) atom by a chromium(III) ion in an Fe4 propeller‐like single‐molecule magnet (SMM). Structural and analytical data, high‐frequency EPR (HF‐EPR) and magnetic studies indicate that the compound is a solid solution of chromium‐centred Fe3Cr (S=6) and Fe4 (S=5) species in an 84:16 ratio. Although SMM behaviour is retained, the |D| parameter is considerably reduced as compared with the corresponding tetra‐iron(III) propeller (D=?0.179 vs. ?0.418 cm?1), and results in a lower energy barrier for magnetisation reversal (Ueff/kB=7.0 vs. 15.6 K). The origin of magnetic anisotropy in Fe3CrPh has been fully elucidated by preparing its Cr‐ and Fe‐doped Ga4 analogues, which contain chromium(III) in the central position (c) and iron(III) in two magnetically distinct peripheral sites (p1 and p2). According to HF‐EPR spectra, the Cr and Fe dopants have hard‐axis anisotropies with Dc=0.470(5) cm?1, Ec=0.029(1) cm?1, Dp1=0.710(5) cm?1, Ep1=0.077(3) cm?1, Dp2=0.602(5) cm?1, and Ep2=0.101(3) cm?1. Inspection of projection coefficients shows that contributions from dipolar interactions and from the central chromium(III) ion cancel out almost exactly. As a consequence, the easy‐axis anisotropy of Fe3CrPh is entirely due to the peripheral, hard‐axis‐type iron(III) ions, the anisotropy tensors of which are necessarily orthogonal to the threefold molecular axis. A similar contribution from peripheral ions is expected to rule the magnetic anisotropy in the tetra‐iron(III) complexes currently under investigation in the field of molecular spintronics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号