首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   216篇
  免费   15篇
  国内免费   22篇
化学   143篇
晶体学   1篇
力学   5篇
综合类   6篇
数学   21篇
物理学   77篇
  2023年   3篇
  2022年   9篇
  2021年   11篇
  2020年   18篇
  2019年   11篇
  2018年   8篇
  2017年   5篇
  2016年   13篇
  2015年   12篇
  2014年   13篇
  2013年   8篇
  2012年   17篇
  2011年   15篇
  2010年   15篇
  2009年   7篇
  2008年   17篇
  2007年   8篇
  2006年   6篇
  2005年   2篇
  2004年   6篇
  2003年   8篇
  2002年   6篇
  2001年   2篇
  2000年   4篇
  1999年   4篇
  1998年   3篇
  1997年   7篇
  1996年   4篇
  1995年   1篇
  1994年   4篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1984年   1篇
排序方式: 共有253条查询结果,搜索用时 15 毫秒
1.
Journal of Thermal Analysis and Calorimetry - In this article, a pillared layered antimony hydroxide (Sb-LH) material has been prepared by the hydrothermal method. X-ray diffraction,...  相似文献   
2.
N^3-嘌呤核苷由于可能同时被嘌呤和嘧啶代谢酶识别,因而有望作为双靶点药物应用于抗病毒治疗.报道了一种以α-(N^3-嘌呤)取代的环烷酮为原料,通过不对称氢转移反应实现动态动力学拆分,高收率高立体选择性地合成系列碳环N^3-嘌呤核苷化合物.该催化体系也适用于α-嘧啶取代的环烷酮底物,且产物通过进一步衍生,合成了2’-F-,Ac S-,N^3-修饰的碳环嘧啶核苷.  相似文献   
3.
The contribution of rheological properties and viscoelasticity of the interfacial adsorbed layer to the emulsification mechanism of enzymatic modified sugar beet pectin (SBP) was studied. The component content of each enzymatic modified pectin was lower than that of untreated SBP. Protein and ferulic acid decreased from 5.52% and 1.08% to 0.54% and 0.13%, respectively, resulting in a decrease in thermal stability, apparent viscosity, and molecular weight (Mw). The dynamic interfacial rheological properties showed that the interfacial pressure and modulus (E) decreased significantly with the decrease of functional groups (especially proteins), which also led to the bimodal distribution of particle size. These results indicated that the superior emulsification property of SBP is mainly determined by proteins, followed by ferulic acid, and the existence of other functional groups also promotes the emulsification property of SBP.  相似文献   
4.
Zn−I2 batteries stand out in the family of aqueous Zn-metal batteries (AZMBs) due to their low-cost and immanent safety. However, Zn dendrite growth, polyiodide shuttle effect and sluggish I2 redox kinetics result in dramatically capacity decay of Zn−I2 batteries. Herein, a Janus separator composed of functional layers on anode/cathode sides is designed to resolve these issues simultaneously. The cathode layer of Fe nanoparticles-decorated single-wall carbon nanotubes can effectively anchor polyiodide and catalyze the redox kinetics of iodine species, while the anode layer of cation exchange resin rich in −SO3 groups is beneficial to attract Zn2+ ions and repel detrimental SO42−/polyiodide, improving the stability of cathode/anode interfaces synergistically. Consequently, the Janus separator endows outstanding cycling stability of symmetrical cells and high-areal-capacity Zn−I2 batteries with a lifespan over 2500 h and a high-areal capacity of 3.6 mAh cm−2.  相似文献   
5.
In this study, a series of tetrafluoroborates with non-π-conjugated [BF4] tetrahedra are investigated systematically by first-principles calculations. Theoretical studies demonstrate that tetrafluoroborates with alkali and/or alkaline-earth metals are more favorable for deep-ultraviolet transmission and are comparable to the classical deep-ultraviolet (deep-UV) material, MgF2. Furthermore, bandgap decrease with the increasing of ionic radii in alkali and/or alkaline-earth metals. Introducing highly polarizable cations with d10-configuration or cations with lone pair electrons into the structure will decrease the bandgaps. The birefringence and second harmonic generation effects are not large enough in tetrafluoroborates because polarizability anisotropy and hyperpolarizability in non-π-conjugated [BF4] tetrahedra are much smaller than those in π-conjugated groups. However, the second harmonic generation effect for [BF4] tetrahedra has a higher contribution in comparison with that due to birefringence. To effectively synthesize the borate fluorides or fluorooxoborates in the deep-UV region, raw materials with B−F bonds are preferred.  相似文献   
6.

Urea, sodium hydroxide and sodium sulfide were used to treat the cuticle layer of wool before graft copolymerization and amidoximation to enhance the uranium uptaking capacity of amidoximated wool fiber based adsorbent (Wool-g-AOs). The wool-g-AOs were used for recovery of U(VI) from aqueous solutions. The simulated nuclear industry effluent was used for investigating the selectivity and industrial applicability of Wool-g-AOs. The adsorption of uranium(VI) on Wool-g-AOs was pH dependent. The Langmuir model fitted well with the equilibrium data. Kinetic data were fitted well to pseudo second order model.

  相似文献   
7.
We demonstrate high-performance broadband tunable external-cavity lasers(ECLs) with the metal-organic chemical vapor deposition(MOCVD) grown In As/In P quantum dots(QDs) structures. Without cavity facet coatings, the 3-d B spectral bandwidth of the Fabry–Perot(FP) laser is approximately 10.8 nm, while the tuning bandwidth of ECLs is 45 nm.Combined with the anti-reflection(AR)/high-reflection(HR) facet coating, a 92 nm bandwidth tuning range has been obtained with the wavelength covering from 1414 nm to 1506 nm. In most of the tuning range, the threshold current density is lower than 1.5 k A/cm2. The maximum output power of 6.5 m W was achieved under a 500 m A injection current.All achievements mentioned above were obtained under continuous-wave(CW) mode at room temperature(RT).  相似文献   
8.
Acid‐treated g‐C3N4‐Cu2O was prepared by hydrothermal reduction followed by high temperature calcination and acid exfoliation. The structures and properties of as‐synthesized samples were characterized using a range of techniques, such as X‐ray photoelectron spectroscopy, scanning electron microscopy, Photoluminescence Spectroscopy and the Brunauer–Emmett–Teller (BET) theory. The photocatalytic activity was evaluated by measuring the photodegradation of methyl orange under visible‐light irradiation. Based on the results of TEM, XPS, EPR and other techniques, it was verified that a heterojunction was formed. The acid treatment process can increase the specific surface area to form abundant heterojunction interfaces as channels for photo‐generated carrier separation, thereby enhancing its light utilization and quantum efficiency. Results indicate that acid‐treated g‐C3N4‐Cu2O possesses a large specific surface area, which provides plentiful activated sites for heterojunctions to form; in addition, it showed a high visible light effect and the minimum charge‐transfer resistance. Furthermore, the g‐C3N4‐Cu2O material exhibits high levels of effectiveness and stability. Electron paramagnetic resonance and a series of radical trapping experiments demonstrate that the holes and ?O2? could be the main active species in methyl orange photodegradation. This work could provide new insights into the fabrication of composite materials as high‐performance photocatalysts, and facilitate their application in addressing environmental protection issues.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号