首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54篇
  免费   3篇
化学   34篇
力学   1篇
数学   5篇
物理学   17篇
  2022年   2篇
  2021年   1篇
  2020年   3篇
  2019年   1篇
  2017年   2篇
  2016年   2篇
  2014年   6篇
  2013年   6篇
  2012年   2篇
  2011年   5篇
  2010年   4篇
  2009年   4篇
  2008年   2篇
  2007年   2篇
  2006年   1篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  2000年   1篇
  1997年   1篇
  1995年   1篇
  1993年   1篇
  1984年   1篇
  1982年   1篇
  1980年   2篇
  1977年   1篇
  1970年   1篇
排序方式: 共有57条查询结果,搜索用时 15 毫秒
1.
Trigonelline (TR), 4-hydroxyisoleucine (4-HI), and diosgenin (DG) are the main bioactives of the purified standardized extract of the popular plant Trigonella foenum-graecum L. (TFG), and it has been proven effective for the treatment of various diseases. However, to the best of our knowledge, no study has investigated the pharmacokinetic parameters of purified standardized T. foenum-graecum extract in normal and diabetic Wistar rats. The present study has developed and validated a rapid, reliable, and sensitive simultaneous ultra-performance liquid chromatography MS method to estimate these bioactives. The chromatographic separation was achieved using methanol, acetonitrile, and 0.1% formic acid with the ideal gradient flow system on a BEH Shield RP 18 column. A positive electrospray ionization mode was selected to estimate m/z values of TR (138.14 > 94.63), 4-HI (148.19 > 74.08), and DG (415.54 > 271.33). The method was robust and reproducible over the linearity range of 60–5000, 6–5000, and 15–5000 ng/mL for TR, 4-HI, and DG, respectively. Using this novel validated method, we investigated the pharmacokinetic parameters of bioactives using Phoenix WinNonlin version 8.0 (Certera) in normal and diabetic rats. The assay was successfully applied for the estimation of pharmacokinetic parameters using noncompartmental analysis. This investigation shows that the absorption rate increased, whereas distribution and elimination processes slowed down in diabetic rats compared with normal rats.  相似文献   
2.
Recently, silica nanoparticles (SNPs) have drawn widespread attention due to their applications in many emerging areas because of their tailorable morphology. During the last decade, remarkable efforts have been made on the investigations for novel processing methodologies to prepare SNPs, resulting in better control of the size, shape, porosity and significant improvements in the physio-chemical properties. A number of techniques available for preparing SNPs namely, flame spray pyrolysis, chemical vapour deposition, micro-emulsion, ball milling, sol-gel etc. have resulted, a number of publications. Among these, preparation by sol-gel has been the focus of research as the synthesis is straightforward, scalable and controllable. Therefore, this review focuses on the recent progress in the field of synthesis of SNPs exhibiting ordered mesoporous structure, their distribution pattern, morphological attributes and applications. The mesoporous silica nanoparticles (MSNPs) with good dispersion, varying morphology, narrow size distribution and homogeneous porous structure have been successfully prepared using organic and inorganic templates. The soft template assisted synthesis using surfactants for obtaining desirable shapes, pores, morphology and mechanisms proposed has been reviewed. Apart from single template, double and mixed surfactants, electrolytes, polymers etc. as templates have also been intensively discussed. The influence of reaction conditions such as temperature, pH, concentration of reagents, drying techniques, solvents, precursor, aging time etc. have also been deliberated. These MSNPs are suitable for a variety of applications viz., in the drug delivery systems, high performance liquid chromatography (HPLC), biosensors, cosmetics as well as construction materials. The applications of these SNPs have also been briefly summarized.  相似文献   
3.
A facile method for the construction of an immunoconjugate which displays targeting ligands, such as antibody fragments, with a high density is reported. For this purpose, we synthesized a novel trifunctional crosslinking reagent. By the use of this reagent, ligands targeting the specific cell can be displayed on the surface of the drug carrier with a high density. In this study, we display HER2 (human epidermal growth‐factor receptor‐2) binding ligands on branched polyethylenimine (PEI), which can form polyplexes with plasmid DNA. Kinetic analysis of the binding to the extracellular domain of HER2 show the PEI displaying a high density of ligands binds to the target more strongly compared to the PEI displaying ligands at a low density. The increased density of HER2 ligands displayed on the gene carrier contributes to the improved transfection efficiency. This approach can be applied to other drug delivery systems, including liposome, micelle, and so on.  相似文献   
4.
MacMahon’s definition of self-inverse composition is extended ton-colour self-inverse composition. This introduces four new sequences which satisfy the same recurrence relation with different initial conditions like the famous Fibonacci and Lucas sequences. For these new sequences explicit formulas, recurrence relations, generating functions and a summation formula are obtained. Two new binomial identities with combinatorial meaning are also given.  相似文献   
5.
The results of the electronic structures and conduction properties of four novel donor-acceptor polymers based on polysilole, obtained on the basis of ab initio Hartree-Fock crystal orbital method using their optimized geometries, are reported. The repeat unit of these polymers consists of bicyclopentadisilole unit bridged by an electron-accepting group Y(Y=CCH2 in PSICH, CO in PSICF, CCF2 and CC(CN)2 in PSICN). All the polymers on the basis of their geometries and π-bond order values are found to have benzenoid-type electronic structures. Comparison of the important electronic properties such as ionization potential, electron affinity and band-gap of these polymers indicates PSICN to be the best candidate for intrinsic conductivity and reductive (n-) doping while PSICH is predicted to be the best candidate for oxidative (p-) doping. All these polymers are estimated to have band-gap values ranging between 1 and 2 eV. The low band-gap values of these polymers are rationalised on the basis of the patterns of their frontier orbitals.  相似文献   
6.
V K Gupta  A Wadhwa  J D Anand 《Pramana》1995,45(2):195-208
We evaluate the emissivity rates for d-decay and s-decay by exactly solving the angular integrals involved and without assuming the degeneracy of electrons. We have also studied the effects of QCD coupling constant as well as the s-quark mass on the emissivity rates. We find that these parameters are important in determining the threshold and extinction densities for d- and s-decays.  相似文献   
7.
8.
The muscle metabolism of at-rest patients with varying degrees of postpolio residual paralysis (PPRP) was studied and compared with that of controls using in vivo phosphorus magnetic resonance spectroscopy. The phosphocreatine (PCr)/inorganic phosphate (Pi) and PCr/adenosine triphosphate ratios were lower in patients than in controls. Reduction in PCr/Pi suggests abnormalities in oxidative phosphorylation. A significant increase was observed in the phosphomonoester/PCr ratio in patients, indicating the accumulation of intermediary compounds of the glycolytic pathway. Furthermore, the phosphodiester/PCr ratio was also significantly increased in patients. In general, the observed changes in metabolite ratios were found to be related to the degree of residual paralysis, suggesting that metabolic changes are secondary to chronic neurogenic processes. These metabolic alterations appear to be the possible cause of energy deficit and underlying muscle fatigue in PPRP patients. The present results provide an insight into the metabolic impairment and degree of muscle damage in patients with PPRP.  相似文献   
9.
The ZnO/Au nanocomposite formation involves synthesis of Au and ZnO colloidal solutions by 532 nm pulse laser ablation of metal targets in deionized water followed by laser irradiation of the mixed colloidal solution. The transmission electron microscope (TEM) and high-resolution transmission electron microscope (HRTEM) images show evolution of spherical particles into ZnO/Au nanonetworks with irradiation time. The formation mechanism of the nanonetwork can be explained on the basis of near resonance absorption of 532 nm irradiation by gold nanoparticles which can cause selective melting and fusion of gold nanoparticles to form network. The ZnO/Au nanocomposites show blue shift in the ZnO exciton absorption and red shift in the Au plasmon resonance absorption due to interfacial charge transfer.  相似文献   
10.
A terminal FeIIIOH complex, [FeIII(L)(OH)]2− (1), has been synthesized and structurally characterized (H4L = 1,2-bis(2-hydroxy-2-methylpropanamido)benzene). The oxidation reaction of 1 with one equiv. of tris(4-bromophenyl)ammoniumyl hexachloroantimonate (TBAH) or ceric ammonium nitrate (CAN) in acetonitrile at −45 °C results in the formation of a FeIIIOH ligand radical complex, [FeIII(L˙)(OH)] (2), which is hereby characterized by UV-visible, 1H nuclear magnetic resonance, electron paramagnetic resonance, and X-ray absorption spectroscopy techniques. The reaction of 2 with a triphenylcarbon radical further gives triphenylmethanol and mimics the so-called oxygen rebound step of Cpd II of cytochrome P450. Furthermore, the reaction of 2 was explored with different 4-substituted-2,6-di-tert-butylphenols. Based on kinetic analysis, a hydrogen atom transfer (HAT) mechanism has been established. A pKa value of 19.3 and a BDFE value of 78.2 kcal/mol have been estimated for complex 2.

One-electron oxidation of an FeIII–OH complex (1) results in the formation of a FeIII–OH ligand radical complex (2). Its reaction with (C6H5)3C˙ results in the formation of (C6H5)3COH, which is a functional mimic of compound II of cytochrome P450.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号