首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
化学   6篇
物理学   6篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2012年   1篇
  2011年   1篇
  2009年   1篇
  2007年   1篇
  2002年   2篇
  2001年   1篇
  1999年   2篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
The survival of living beings, including humanity, depends on a continuous supply of clean water. However, due to the development of industry, agriculture, and population growth, an increasing number of wastewaters is discarded, and the negative effects of such actions are clear. The first step in solving this situation is the collection and monitoring of pollutants in water bodies to subsequently facilitate their treatment. Nonetheless, traditional sensing techniques are typically laboratory-based, leading to potential diminishment in analysis quality. In this paper, the most recent developments in micro- and nano-electrochemical devices for pollutant detection in wastewater are reviewed. The devices reviewed are based on a variety of electrodes and the sensing of three different categories of pollutants: nutrients and phenolic compounds, heavy metals, and organic matter. From these electrodes, Cu, Co, and Bi showed promise as versatile materials to detect a grand variety of contaminants. Also, the most commonly used material is glassy carbon, present in the detection of all reviewed analytes.  相似文献   
2.
Cancer is one of the leading causes of annual deaths worldwide, accounting for nearly 10 million deaths each year. Metastasis, the process by which cancer spreads across the patient's body, is the main cause of death in cancer patients. Because the rising trend observed in statistics of new cancer cases and cancer-related deaths does not allow for an optimistic viewpoint on the future—in relation to this terrible disease—the scientific community has sought methods to enable early detection of cancer and prevent the apparition of metastatic tumors. One such method is known as liquid biopsy, wherein a sample is taken from a bodily fluid and analyzed for the presence of CTCs or other cancer biomarkers (e.g., growth factors). With this objective, interest is growing by year in electrokinetically-driven microfluidics applied for the concentration, capture, filtration, transportation, and characterization of CTCs. Electrokinetic techniques—electrophoresis, dielectrophoresis, electrorotation, and electrothermal and EOF—have great potential for miniaturization and integration with electronic instrumentation for the development of point-of-care devices, which can become a tool for early cancer diagnostics and for the design of personalized therapeutics. In this contribution, we review the state of the art of electrokinetically-driven microfluidics for cancer cells manipulation.  相似文献   
3.
A post-column infusion system was developed in order to analyze suppression of electrospray ionization (ESI) tandem mass spectrometry response in the presence of endogenous plasma interferences. By enabling direct detection of these interfering components, this experimental system was used to analyze the ability of several common extraction procedures to remove endogenous plasma components that cause changes in the ESI response of model drug substances. Methyl-t-butyl ether (MTBE) liquid-liquid, Oasis and Empore solid-phase, and acetonitrile (ACN) protein precipitation sample preparation methods were tested using the post-column infusion system. In all cases, ACN protein precipitation samples showed the greatest amount of ESI response suppression while liquid-liquid extracts demonstrated the least. In addition, the three test compounds, phenacetin, caffeine, and a representative Merck compound, demonstrated that ESI response suppression is compound dependent. Suppression was greatest with caffeine, the most polar analyte, and the smallest for the Merck compound, the least polar analyte. Copyright 1999 John Wiley & Sons, Ltd.  相似文献   
4.
Feasibility of gamma-ray spectroscopy at relativistic energies with exotic heavy-ions and new generation of germanium detectors (segmented Clover) is discussed. An experiment with such detector array and radioactive is discussed.  相似文献   
5.
We report measurements of non-linear charge transport in epitaxial (La1−x Pr x )0.7Ca0.3MnO3 thin films fabricated on (100) oriented SrTiO3 single crystals by pulsed laser deposition. The end members of this series, namely Pr0.7Ca0.3MnO3 and La0.7Ca0.3MnO3 are canonical charge-ordered (CO) and ferromagnetic manganites, respectively. The onset of the CO state in Pr0.7Ca0.3MnO3 is manifested by a pronounced insulating behavior below ∼ 200 K. The CO state remains stable even when a large (∼ 2×105 V/cm) electric field is applied across the thin film samples. However, on substitution of Pr with La, a crossover from the highly resistive CO state to a state of metallic character is observed at relatively low electric fields. The current-voltage characteristics of the samples at low temperatures show hysteretic and history dependent effects. The electric field driven charge transport in the system is modelled on the basis of an inhomogeneous medium consisting of ferromagnetic metallic clusters dispersed in a CO background.  相似文献   
6.
The self-chemical ionization of diethylzinc is examined by Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry and semiempirical molecular orbital calculations. Electron impact of diethylzinc neutral produces the radical cation, C(4)H(15)Zn(+) (m/z x 122), which reacts further with the neutral (C(2)H(5))(2)Zn to give the following product ions: Zn(+) (m/z x 64), C(2)H(5)Zn(+) (m/z x 93), C(4)H(9)Zn(+) (m/z x 121), C(4)H(11)Zn(2)(+) (m/z x 187), and C(6)H(15)Zn(2)(+) (m/z x 215). To determine the structure and pathways for production of these ions, monoisotopic (12)C(4)H(15)(64)Zn(+), (64)Zn(+) and (12)C(2)H(5)(64)Zn(+) were individually isolated and reacted with the neutral background. We also performed semiempirical molecular orbital calculations (ZINDO/1). The molecular orbital calculations and experimental data are consistent in predicting that the ethyl group on the diethylzinc cation carries the positive charge. Copyright 1999 John Wiley & Sons, Ltd.  相似文献   
7.
8.
Temperature is a critical—yet sometimes overlooked—parameter in microfluidics. Microfluidic devices can experience heating inside their channels during operation due to underlying physicochemical phenomena occurring therein. Such heating, whether required or not, must be monitored to ensure adequate device operation. Therefore, different techniques have been developed to measure and control temperature in microfluidic devices. In this contribution, the operating principles and applications of these techniques are reviewed. Temperature-monitoring instruments revised herein include thermocouples, thermistors, and custom-built temperature sensors. Of these, thermocouples exhibit the widest operating range; thermistors feature the highest accuracy; and custom-built temperature sensors demonstrate the best transduction. On the other hand, temperature control methods can be classified as external- or integrated-methods. Within the external methods, microheaters are shown to be the most adequate when working with biological samples, whereas Peltier elements are most useful in applications that require the development of temperature gradients. In contrast, integrated methods are based on chemical and physical properties, structural arrangements, which are characterized by their low fabrication cost and a wide range of applications. The potential integration of these platforms with the Internet of Things technology is discussed as a potential new trend in the field.  相似文献   
9.
We present evidence for a nonsingular origin of the Universe with intial conditions determined by quantum physics and relativistic gravity. In particular, we establish that the present temperature of the microwave background and the present density of the Universe agree well with our predictions from these intial conditions, after evolution to the present age using the Einstein-Friedmann equation. Remarkably, the quantum origin for the Universe naturally allows its evolution at exactly the critical density. We also discuss the consequences of these results to some fundamental aspects of quantum physics in the early Universe.  相似文献   
10.
Dielectrophoresis is the electrokinetic movement of particles due to polarization effects in the presence of non-uniform electric fields. In insulator-based dielectrophoresis (iDEP) regions of low and high electric field intensity, i.e. non-uniformity of electric field, are produced when the cross-sectional area of a microchannel is decreased by the presence of electrical insulating structures between two electrodes. This technique is increasingly being studied for the manipulation of a wide variety of particles, and novel designs are continuously developed. Despite significant advances in the area, complex mixture separation and sample fractionation continue to be the most important challenges. In this work, a microchannel design is presented for carrying out direct current (DC)-iDEP for the separation of a mixture of particles. The device comprises a main channel, two side channels and two sections of cylindrical posts with different diameters, which will generate different non-uniformities in the electric field on the main channel, designed for the discrimination and separation of particles of two different sizes. By applying an electric potential of 1000 V, a mixture of 1 and 4 μm polystyrene microspheres were dielectrophoretically separated and concentrated at the same time and then redirected to different outlets. The results obtained here demonstrate that, by carefully designing the device geometry and selecting operating conditions, effective sorting of particle mixtures can be achieved in this type of multi-section DC-iDEP devices.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号