首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56篇
  免费   0篇
化学   53篇
晶体学   1篇
数学   1篇
物理学   1篇
  2022年   1篇
  2019年   2篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2012年   4篇
  2011年   6篇
  2010年   9篇
  2009年   1篇
  2008年   7篇
  2007年   5篇
  2006年   3篇
  2005年   4篇
  2004年   3篇
  2003年   1篇
  2002年   2篇
  1998年   1篇
  1994年   1篇
  1985年   1篇
  1982年   1篇
排序方式: 共有56条查询结果,搜索用时 218 毫秒
1.
Analogs of 4-amino-1,2,4,5-tetrahydro-2-benzazepin-3-ones, containing a methyl substituent at the 4- or 5-position, or a phenyl substituent at C-1, were prepared. Conformational analysis of tetrapeptide models containing these analogs indicated different conformations of the benzazepinone ring, and extended backbone conformations, except for the 4-methyl-substituted analog. The latter was shown to have a strong preference for a turn conformation. Incorporation into the N-terminal tetrapeptide sequence of dermorphin resulted in potent opioid analogs and an indication that the receptor-bound conformation might not adopt a turn structure.  相似文献   
2.
To acquire fertilization competence, spermatozoa must undergo several biochemical and motility changes in the female reproductive tract, collectively called capacitation. Actin polymerization and the development of hyperactivated motility (HAM) are part of the capacitation process. In a recent study, we showed that irradiation of human sperm with visible light stimulates HAM through a mechanism involving reactive‐oxygen‐species (ROS), Ca2+ influx, protein kinases A (PKA), and sarcoma protein kinase (Src). Here, we showed that this effect of light on HAM is mediated by ROS‐dependent activation of the epidermal growth factor receptor (EGFR). Interestingly, ROS‐mediated HAM even when the EGFR was activated by EGF, the physiological ligand of EGFR. Light irradiation stimulated ROS‐dependent actin polymerization, and this effect was abrogated by PBP10, a peptide which activates the actin‐severing protein, gelsolin, and causes actin‐depolymerization in human sperm. Light‐stimulated tyrosine phosphorylation of Src‐dependent gelsolin, resulting in enhanced HAM. Thus, light irradiation stimulates HAM through a mechanism involving Src‐mediated actin polymerization. Light‐stimulated HAM and in vitro‐fertilization (IVF) rate in mouse sperm, and these effects were mediated by ROS and EGFR. In conclusion, we show here that irradiation of sperm with visible light, enhances their fertilization capacity via a mechanism requiring ROS, EGFR and HAM.  相似文献   
3.
The crystal and molecular structure of (+)-(1R, 2S, 6R, 7S, 1R)-5-(1-phenylethylamino)-endo-tricyclo[5.2.1.02,6]deca-4,8-dien-3-one is described. Based on the known absolute configuration (R) of the -phenylethylamine moiety the X-ray analysis revealed the absolute configuration of the title compound. The structure was refined to R 1 = 0.0298 for 1950 reflections (with I > 2(I)). Crystal data: C18H19NO, monoclinic, space group P21, a = 6.7406(4), b = 9.959(2), c = 11.3123(8)Å, = 102.969(5), V = 740.0(2)Å3, and Z = 2.  相似文献   
4.
The synthesis and characterisation of segmented block copolymers based on mixtures of hydrophilic poly(ethylene oxide) and hydrophobic poly(tetramethylene oxide) polyether segments and monodisperse crystallisable bisester tetra-amide segments are reported. The PEO length was varied from 600 to 8000 g/mol and the PTMO length was varied from 650 to 2900 g/mol. The influence of the polyether phase composition on the thermal mechanical and the elastic properties of the resulting copolymers was studied.The use of high melting monodisperse tetra-amide segments resulted in a fast and almost complete crystallisation of the rigid segment. The copolymers had only one polyether glass transition temperature, which suggests that the amorphous polyether segments were homogenously mixed. Thermal analysis of the copolymers showed one polyether melting temperature that was lower than in the case of ideal co-crystallisation between the two polyether segments. However, at PEO or PTMO lengths larger than 2000 g/mol two polyether melting temperatures were observed. The copolymer with the best low temperature properties was based on a mixture of PEO and PTMO segments, both having a molecular weight of 1000 g/mol, at a weight ratio of 30/70.  相似文献   
5.
Segmented block copolymers based on poly(ethylene oxide) (PEO) flexible segments and monodisperse crystallizable bisester tetra‐amide segments were made via a polycondensation reaction. The molecular weight of the PEO segments varied from 600 to 4600 g/mol and a bisester tetra‐amide segment (T6T6T) based on dimethyl terephthalate (T) and hexamethylenediamine (6) was used. The resulting copolymers were melt‐processable and transparent. The crystallinity of the copolymers was investigated by differential scanning calorimetry (DSC) and Fourier Transform infrared (FTIR). The thermal properties were studied by DSC, temperature modulated synchrotron small angle X‐ray scattering (SAXS), and dynamic mechanical analysis (DMA). The elastic properties were evaluated by compression set (CS) test. The crystallinity of the T6T6T segments in the copolymers was high (>84%) and the crystallization fast due to the use of monodisperse tetra‐amide segments. DMA experiments showed that the materials had a low Tg, a broad and almost temperature independent rubbery plateau and a sharp flow temperature. With increasing PEO length both the PEO melting temperature and the PEO crystallinity increased. When the PEO segment length was longer than 2000 g/mol the PEO melting temperature was above room temperature and this resulted in a higher modulus and in higher compression set values at room temperature. The properties of PEO‐T6T6T copolymers were compared with similar poly(propylene oxide) and poly(tetramethylene oxide) copolymers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4522–4535, 2007  相似文献   
6.
A generic strategy for the chiral separation of non-acidic pharmaceuticals was updated to complete an approach defined earlier. The selected chiral stationary phases are all polysaccharide selectors, chlorinated, and non-chlorinated, namely Lux(?) Amylose 2, Chiralcel(?) OD-RH, Lux(?) Cellulose 4, and Chiralpak(?) AD-RH. In this study, the screening step of a strategy defined earlier was updated and the optimization steps were re-evaluated for the applied chiral stationary phases. These screening and optimization conditions were studied by analyzing 20 pharmaceuticals at different organic modifier contents, temperatures, or applied voltages. The proposed chiral separation strategy was then evaluated with a test set of 19 non-acidic drugs. Seventeen compounds (89.5%) of the latter set could be resolved of which eight (42%) were baseline separated. The strategy thus proved to be applicable on compounds different from those used for its development.  相似文献   
7.
The application of a potential to deposit a monolayer of 3-mercaptopropionic acid-histidinyl-histidinyl-histidinyl-aspartyl-aspartyl (3-MPA-HHHDD-OH) controls the density and molecular structure of the peptide monolayer, which results in different wettabilities of the surface, surface density, orientation of the molecule (extended or bent), and nonspecific adsorption of serum proteins. 3-MPA-HHHDD-OH must be deposited at 200 mV to maintain an extended configuration, which promoted low biofouling properties.  相似文献   
8.
Controlling the interfacial behavior and properties of lipid liquid crystalline nanoparticles (LCNPs) at surfaces is essential for their application for preparing functional surface coatings as well as understanding some aspects of their properties as drug delivery vehicles. Here we have studied a LCNP system formed by mixing soy phosphatidylcholine (SPC), forming liquid crystalline lamellar structures in excess water, and glycerol dioleate (GDO), forming reversed structures, dispersed into nanoparticle with the surfactant polysorbate 80 (P80) as stabilizer. LCNP particle properties were controlled by using different ratios of the lipid building blocks as well as different concentrations of the surfactant P80. The LCNP size, internal structure, morphology, and charge were characterized by dynamic light scattering (DLS), synchrotron small-ange X-ray scattering (SAXS), cryo-transmission electron microscopy (cryo-TEM), and zeta potential measurements, respectively. With increasing SPC to GDO ratio in the interval from 35:65 to 60:40, the bulk lipid phase structure goes from reversed cubic micellar phase with Fd3m space group to reversed hexagonal phase. Adding P80 results in a successive shift toward more disorganized lamellar type of structures. This is also seen from cryo-TEM images for the LCNPs, where higher P80 ratios results in more extended lamellar layers surrounding the inner, more dense, lipid-rich particle core with nonlamellar structure. When put in contact with a solid silica surface, the LCNPs adsorb to form multilayer structures with a surface excess and thickness values that increase strongly with the content of P80 and decreases with increasing SPC:GDO ratio. This is reflected in both the adsorption rate and steady-state values, indicating that the driving force for adsorption is largely governed by attractive interactions between poly(ethylene oxide) (PEO) units of the P80 stabilizer and the silica surface. On cationic surface, i.e., silica modified with 3-aminopropltriethoxysilane (APTES), the slightly negatively charged LCNPs give rise to a very significant adsorption, which is relatively independent of LCNP composition. Finally, the dynamic thickness measurements indicate that direct adsorption of intact particles occurred on the cationic surface, while a slow buildup of the layer thickness with time is seen for the weakly interacting systems.  相似文献   
9.
The influence of using normal-phase and reversed-phase versions of four commercial polysaccharide stationary phases on chiral separations was investigated with capillary electrochromatography (CEC). Both versions of the stationary phases, Chiralcel OD, OJ, and Chiralpak AD, AS were tested for the separation of two basic, two acidic, a bifunctional, and a neutral compound. Different background electrolytes were used, two at low pH for the acid, bifunctional and neutral substances, and three at high pH for the basic, bifunctional and neutral ones. This setup allowed evaluating differences between both stationary-phase versions and between mobile-phase compositions on a chiral separation. Duplicate CEC columns of each stationary phase were in-house prepared and tested, giving information about the intercolumn reproducibility. In general, reversed-phase versions of the current commercial polysaccharide stationary phases are found to be best for reversed-phase CEC, even though at high pH no significant differences were seen between both versions. Most differences were observed at low pH. For acidic compounds, it was seen that an ammonium formate electrolyte performed best, which is also an excellent electrolyte if coupling with mass spectrometry is desired. For basic, bifunctional and neutral compounds, no significant differences between the three tested electrolytes were observed at high pH. Here, a phosphate buffer is preferred as electrolyte because of its buffering capacities. However, if coupling to mass spectrometry is wanted, the more volatile ammonium bicarbonate electrolyte can be used as an alternative.  相似文献   
10.
Polymeric methacrylate-based monoliths are evaluated in capillary electrochromatography (CEC) and pressurized capillary electrochromatography (p-CEC) for their potential in pharmaceutical analysis. Using a given polymerization mixture as a basis for the monolith synthesis, different mobile phase pH at constant organic modifier concentrations are tested in both CEC and p-CEC. The test set consists of basic, acidic, amphoteric, and neutral compounds, which are mainly pharmaceuticals. Because of the mainly hydrophobic character of the stationary phase, the interactions are largest when the compounds appear in an uncharged state, but some ion-exchange phenomena with negatively charged compounds can also be observed. In CEC, acidic substances are most retained at low pH. For amphoteric and neutral compounds, no preference regarding analyzing pH can be derived from these experiments. For basics, a high pH is chosen, but a reduced solvent strength is needed to enhance the retention of these compounds. The retention mechanism in p-CEC can also be assigned to both hydrophobic and ionic interactions. For acidic, amphoteric, and neutral compounds, acceptable retention is seen. For the basic compounds, the retention with a mobile phase containing 50% organic modifier is low, as in CEC. However, when the organic modifier content in the mobile phase is decreased, retention increases and the selectivity of the stationary phase is more pronounced. This mode of operation presents a possibility for separating some test mixtures, thus some potential for pharmaceutical analysis is seen. More efforts are needed to obtain higher efficiencies and better peak shapes, which might be solved by a further optimization of both the stationary phase synthesis and the mobile phase composition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号