首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   1篇
化学   20篇
物理学   18篇
  2020年   1篇
  2016年   1篇
  2014年   1篇
  2012年   5篇
  2011年   3篇
  2010年   3篇
  2008年   1篇
  2007年   2篇
  2006年   3篇
  2005年   2篇
  2004年   1篇
  2002年   1篇
  2000年   3篇
  1999年   2篇
  1996年   3篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1990年   1篇
排序方式: 共有38条查询结果,搜索用时 31 毫秒
1.
2.
Measurements of synchrotron radiation emitted by 30-MeV runaway electrons in the TEXTOR-94 tokamak show that the runaway population decays after switching on neutral beam injection (NBI). The decay starts only with a significant delay, which decreases with increasing NBI heating power. This delay provides direct evidence of the energy dependence of runaway confinement, which is expected if magnetic modes govern the loss of runaways. Application of the theory by Mynick and Strachan [Phys. Fluids 24, 695 (1981)] yields estimates for the "mode width" (delta) of magnetic perturbations: delta<0.5 cm in Ohmic discharges, increasing to delta = 4.4 cm for 0. 6 MW NBI.  相似文献   
3.
Numerical Hartree-Fock (HF) energies accurate to at least 1 microhartree are reported for 27 diatomic transition-metal-containing species. The convergence of HF energies toward this numerical limit upon increasing the basis set size has been investigated, where standard nonrelativistic all-electron correlation consistent basis sets and augmented basis sets, developed by Balabanov and Peterson [J. Chem. Phys. 123, 064107 (2005)], were employed. Several schemes which enable the complete basis set (CBS) limit to be determined have been investigated, and the resulting energies have been compared to the numerical Hartree-Fock energies. When comparing basis set extrapolation schemes, those in the form of exponential functions perform well for our test set, with mean absolute deviations from numerical HF energies of 234 and 153 microE(h), when the CBS limit has been determined using a two-point fit as proposed by Halkier et al. [Chem. Phys. Lett. 302, 437 (1999)] on calculations of triple- and quadruple-zeta basis set qualities and calculations of quadruple- and quintuple-zeta basis set qualities, respectively. Overall, extrapolation schemes in the form of a power series are not recommended for the extrapolation of transition metal HF energies. The impact of basis set superposition error has also been examined.  相似文献   
4.
The correlation consistent composite approach (ccCA) was applied to the prediction of reaction barrier heights (i.e., transition state energy relative to reactants and products) for a standard benchmark set of reactions comprised of both hydrogen transfer reactions and nonhydrogen transfer reactions (i.e., heavy-atom transfer, SN2, and unimolecular reactions). The ccCA method was compared against G3B for the same set of reactions. Error metrics indicate that ccCA achieves "chemical accuracy" with a mean unsigned error (MUE) of 0.89 kcal/mol with respect to the benchmark data for barrier heights; G3B has a mean unsigned error of 1.94 kcal/mol. Further, the greater accuracy of ccCA for predicted reaction barriers is compared to other benchmarked literature methods, including density functional (BB1K, MUE=1.16 kcal/mol) and wavefunction-based [QCISD(T), MUE=1.10 kcal/mol] methods.  相似文献   
5.
The mechanism and intermediates of hydroalkylation of aryl alkynes via C(sp(3))-H activation through a platinum(II)-centered catalyst are investigated with density functional theory at the B3LYP/[6-31G(d) for H, O, C; 6-31+G(d,p) for F, Cl; SDD for Pt] level of theory. Solvent effects on reactions were explored using calculations that included a polarizable continuum model for the solvent (THF). Free energy diagrams for three suggested mechanisms were computed: (a) one that leads to formation of a Pt(II) vinyl carbenoid (Mechanism A), (b) another where the transition state implies a directed 1,4-hydrogen shift (Mechanism B), and (c) one with a Pt-aided 1,4-hydrogen migration (Mechanism C). Results suggest that the insertion reaction pathway of Mechanism A is reasonable. Through 4,5-hydrogen transfer, the Pt(II) vinyl carbenoid is formed. Thus, the stepwise insertion mechanism is favored while the electrocyclization mechanism is implausible. Electron-withdrawing/electron-donating groups substituted at the phenyl and benzyl sp(3) C atoms slightly change the thermodynamic properties of the first half of Mechanism A, but electronic effects cause a substantial shift in relative energies for the second half of Mechanism A. The rate-limiting step can be varied between the 4,5-hydrogen shift process and the 1,5-hydrogen shift step by altering electron-withdrawing/electron-donating groups on the benzyl C atom. Additionally, NBO and AIM analyses are applied to further investigate electronic structure changes during the mechanism.  相似文献   
6.
The correlation-consistent composite approach (ccCA), an ab initio composite technique for computing atomic and molecular energies, recently has been shown to successfully reproduce experimental data for a number of systems. The ccCA is applied to the G3/99 test set, which includes 223 enthalpies of formation, 88 adiabatic ionization potentials, 58 adiabatic electron affinities, and 8 adiabatic proton affinities. Improvements on the original ccCA formalism include replacing the small basis set quadratic configuration interaction computation with a coupled cluster computation, employing a correction for scalar relativistic effects, utilizing the tight-d forms of the second-row correlation-consistent basis sets, and revisiting the basis set chosen for geometry optimization. With two types of complete basis set extrapolation of MP2 energies, ccCA results in an almost zero mean deviation for the G3/99 set (with a best value of -0.10 kcal mol(-1)), and a 0.96 kcal mol(-1) mean absolute deviation, which is equivalent to the accuracy of the G3X model chemistry. There are no optimized or empirical parameters included in the computation of ccCA energies. Except for a few systems to be discussed, ccCA performs as well as or better than Gn methods for most systems containing first-row atoms, while for systems containing second-row atoms, ccCA is an improvement over Gn model chemistries.  相似文献   
7.
8.
Various ab initio methods, including self-consistent field (SCF), configuration interaction, coupled cluster (CC), and complete-active-space SCF (CASSCF), have been employed to study the electronic structure of copper hydroxide (CuOH). Geometries, total energies, dipole moments, harmonic vibrational frequencies, and zero-point vibrational energies are reported for the linear 1Sigma+ and 1Pi stationary points, and for the bent ground-state X 1A', and excited-states 2 1A' and 1 1A". Six different basis sets have been used in the study, Wachters/DZP being the smallest and QZVPP being the largest. The ground- and excited-state bending modes present imaginary frequencies for the linear stationary points, indicating that bent structures are more favorable. The effects of relativity for CuOH are important and have been considered using the Douglas-Kroll approach with cc-pVTZ/cc-pVTZ_DK and cc-pVQZ/cc-pVQZ_DK basis sets. The bent ground and two lowest-lying singlet excited states of the CuOH molecule are indeed energetically more stable than the corresponding linear structures. The optimized geometrical parameters for the X 1A' and 1 1A" states agree fairly well with available experimental values. However, the 2 1A' structure and rotational constants are in poor agreement with experiment, and we suggest that the latter are in error. The predicted adiabatic excitation energies are also inconsistent with the experimental values of 45.5 kcal mol(-1) for the 2 1A' state and 52.6 kcal mol(-1) for the 1 1A" state. The theoretical CC and CASSCF methods show lower adiabatic excitation energies for the 1 1A" state (53.1 kcal mol(-1)) than those for the corresponding 2 1A' state (57.6 kcal mol(-1)), suggesting that the 1 1A" state might be the first singlet excited state while the 2 1A' state might be the second singlet excited state.  相似文献   
9.
The correlation consistent composite approach (ccCA) is a model chemistry that has been shown to accurately compute gas-phase enthalpies of formation for alkali and alkaline earth metal oxides and hydroxides (Ho, D. S.; DeYonker, N. J.; Wilson, A. K.; Cundari, T. R. J. Phys. Chem. A 2006, 110, 9767).The ccCA results contrast to more widely used model chemistries where calculated enthalpies of formation for such species can be in error by up to 90 kcal mol-1. In this study, we have applied ccCA to a more general set of 42 s-block molecules and compared the ccCA DeltaHf values to values obtained using the G3 and G3B model chemistries. Included in this training set are water complexes such as Na(H2O)n+ where n = 1 - 4, dimers and trimers of ionic compounds such as (LiCl)2 and (LiCl)3, and the largest ccCA computation to date: Be(acac)2, BeC10H14O4. Problems with the G3 model chemistries seem to be isolated to metal-oxygen bonded systems and Be-containing systems, as G3 and G3B still perform quite well with a 2.7 and 2.6 kcal mol-1 mean absolute deviation (MAD), respectively, for gas-phase enthalpies of formation. The MAD of the ccCA is only 2.2 kcal mol-1 for enthalpies of formation (DeltaHf) for all compounds studied herein. While this MAD is roughly double that found for a ccCA study of >350 main group (i.e., p-block) compounds, it is commensurate with typical experimental uncertainties for s-block complexes. Some molecules where G3/G3B and ccCA computed DeltaHf values deviate significantly from experiment, such as (LiCl)3, NaCN, and MgF, are inviting candidates for new experimental and high-level theoretical studies.  相似文献   
10.
Bose-Einstein condensation in a gas of sodium atoms   总被引:2,自引:0,他引:2  
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号