首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In vivo solid-phase microextraction (SPME) can be used to sample the circulating blood of animals without the need to withdraw a representative blood sample. In this study, in vivo SPME in combination with liquid–chromatography tandem mass spectrometry (LC–MS/MS) was used to determine the pharmacokinetics of two drug analytes, R,R-fenoterol and R,R-methoxyfenoterol, administered as 5 mg kg−1i.v. bolus doses to groups of 5 rats. This research illustrates, for the first time, the feasibility of the diffusion-based calibration interface model for in vivo SPME studies. To provide a constant sampling rate as required for the diffusion-based interface model, partial automation of the SPME sampling of the analytes from the circulating blood was accomplished using an automated blood sampling system. The use of the blood sampling system allowed automation of all SPME sampling steps in vivo, except for the insertion and removal of the SPME probe from the sampling interface. The results from in vivo SPME were compared to the conventional method based on blood withdrawal and sample clean up by plasma protein precipitation. Both whole blood and plasma concentrations were determined by the conventional method. The concentrations of methoxyfenoterol and fenoterol obtained by SPME generally concur with the whole blood concentrations determined by the conventional method indicating the utility of the proposed method. The proposed diffusion-based interface model has several advantages over other kinetic calibration models for in vivo SPME sampling including (i) it does not require the addition of a standard into the sample matrix during in vivo studies, (ii) it is simple and rapid and eliminates the need to pre-load appropriate standard onto the SPME extraction phase and (iii) the calibration constant for SPME can be calculated based on the diffusion coefficient, extraction time, fiber length and radius, and size of the boundary layer. In the current study, the experimental calibration constants of 338.9 ± 30 mm−3 and 298.5 ± 25 mm−3 are in excellent agreement with the theoretical calibration constants of 307.9 mm−3 and 316.0 mm−3 for fenoterol and methoxyfenoterol respectively.  相似文献   

2.
An in situ application of solid-phase microextraction (SPME) as a sampling and sample preparation method coupled to HPLC-MS/MS for direct monitoring of ochratoxin A (OTA) distribution at different locations in a single cheese piece is proposed. To be suited to the acidic analyte, the extraction phase (carbon-tape SPME fiber) was acidified with aqueous solution of HCl at pH 2, instead of the traditional sample pre-treatment with acids before SPME sampling. For calibration, kinetic on-fiber-standardization was used, which allowed the use of short sampling time (20 min) and accurate quantification of the OTA in the semi-solid cheese sample. In addition, the traditional kinetic calibration that used deuterated compounds as standards was extended to use a non-deuterated analogue ochratoxin B (OTB) as the standard of the analyte OTA, which was supported by both theoretical discussion and experimental verification. Finally, the miniaturized SPME fiber was adopted so that the concentration distribution of OTA in a small-sized cheese piece could be directly probed. The detection limit of the resulting SPME method in semi-solid gel was 1.5 ng/mL and the linear range was 3.5–500 ng/mL. The SPME–LC-MS/MS method showed good precision (RSD: ∼10%) and accuracy (relative recovery: 93%) in the gel model. The direct cheese analysis showed comparable accuracy and precision to the established liquid extraction. As a result, the developed in situ SPME–LC-MS/MS method was sensitive, simple, accurate and applicable for the analysis of complicated lipid-rich samples such as cheese.  相似文献   

3.
This study aims to use solid phase microextraction (SPME), a simple tool to investigate diffusion rate (time) constant of selected pharmaceuticals in gel and fish muscle by comparing desorption rate of diffusion of the drugs in both agarose gel prepared with phosphate-buffered saline (PBS; pH 7.4) and fish muscle. The gel concentration (agarose gel model) that could be used to simulate tissue matrix (fish muscle) for free diffusion of drugs under in vitro and in vivo conditions was determined to model mass transfer phenomena between fibre polymer coating and environmental matrix such that partition coefficients and desorption time constant (diffusion coefficient) can be determined. SPME procedure involves preloading the extraction phase (fibre) with the standards from spiked PBS for 1 h via direct extraction. Subsequently, the preloaded fibre is introduced to the sample such fish or agarose gel for specified time ranging from 0.5 to 60 h. Then, fibre is removed at specified time and desorbed in 100 μL of desorption solution (acetonitrile: water 1:1) for 90 min under agitation speed of 1000 rpm. The samples extract were immediately injected to the instrument and analysed using liquid chromatography coupled with tandem mass spectrometry (LC/MS/MS). The limit of detection of the method in gel and fish muscle was 0.01–0.07 ng mL−1 and 0.07–0.34 ng g−1, respectively, while the limit quantification was 0.10–0.20 ng mL−1 in gel samples and 0.40–0.97 ng g−1 in fish sample. The reproducibility of the method was good (5–15% RSD). The results suggest that kinetics of desorption of the compounds in fish tissue and different viscosity of gel can be determined using desorption time constant. In this study, desorption time constant which is directly related to desorption rate (diffusion kinetics) of selected drugs from the fibre to the gel matrix is faster as the viscosity of the gel matrix reduces from 2% (w/v) to 0.8% (w/v). As the concentration of gel reduces, viscosity of the gel will be reduced therefore allowing faster diffusion which invariably affect desorption time constant. Also, desorption time constant of model drugs in the fish muscle and 0.8–0.9% (w/v) gel model are similar based on free diffusion of studied compounds. In addition, in vitro and in vivo desorption time constant comparison shows that desorption time constant in an in vivo system (live fish muscle) is generally higher than an in vitro system (dead fish muscle) except for sertraline and nordiazepam. This study demonstrates SPME as a simple investigative tool to understand kinetics of desorption in an in vivo system with a goal to measure desorption rate of pharmaceuticals in fish.  相似文献   

4.
In this publication, a novel solid phase microextraction (SPME) coating functionalized with a DNA aptamer for selective enrichment of a low abundance protein from diluted human plasma is described. This approach is based on the covalent immobilization of an aptamer ligand on electrospun microfibers made with the hydrophilic polymer poly(acrylonitrile-co-maleic acid) (PANCMA) on stainless steel rods. A plasma protein, human α-thrombin, was employed as a model protein for selective extraction by the developed Apt-SPME probe, and the detection was carried out with liquid chromatography/tandem mass spectrometry (LC–MS/MS). The SPME probe exhibited highly selective capture, good binding capacity, high stability and good repeatability for the extraction of thrombin. The protein selective probe was employed for direct extraction of thrombin from 20-fold diluted human plasma samples without any other purification. The Apt-SPME method coupled with LC–MS/MS provided a good linear dynamic range of 0.5–50 nM in diluted human plasma with a good correlation coefficient (R2 = 0.9923), and the detection limit of the proposed method was found to be 0.30 nM. Finally, the Apt-SPME coupled with LC–MS/MS method was successfully utilized for the determination of thrombin in clinical human plasma samples. One shortcoming of the method is its reduced efficiency in undiluted human plasma compared to the standard solution. Nevertheless, this new aptamer affinity-based SPME probe opens up the possibility of selective enrichment of a given targeted protein from complex sample either in vivo or ex vivo.  相似文献   

5.
A method for pharmacokinetic studies using cassette dosing associated with serial bleeding in mice is described. PK profiles of four soluble epoxide hydrolase inhibitors were determined following oral, subcutaneous or intraperitoneal administration individually or in cassette dosing. Parent analyses were performed on only 5 μL of whole blood from serial bleeds (up to 10 per animal), by LC/MS/MS. An accuracy (88-100%) and precision (<10% RSD) were observed, leading to reliable datum points for PK calculation. PK profiles, Tmax, Cmax and half-life values after cassette dosing were similar to the individual PK results. This method dramatically increases speed of data collection while dramatically reducing cost and animal usage. The results presented here clearly indicate that this proposed method could be applicable to high-throughput PK studies.  相似文献   

6.
In this study, the feasibility of GC–MS was evaluated for the quantification of odorous volatile organic compounds (VOCs) in environmental samples. These included methyl ethyl ketone, isobutyl alcohol, methyl isobutyl ketone, and butyl acetate plus benzene, toluene, and xylene (BTX). For this purpose, the gaseous standard for these VOCs were analyzed by GC–MS with the aid of both direct injection (DI) into the GC injector and solid-phase microextraction (SPME). The liquid phase standard prepared independently was tested additionally by the DI method as a reference to gaseous calibration. The detection limit (DL) values, when tested for basic quality assurance in this study, showed large differences between DI (0.002–0.007 ng) and SPME method (1.03–1.81 ng) in terms of absolute mass. The DL values, when expressed in terms of concentration (v/v), showed considerable improvement in SPME (below 0.40 nmol mol−1) relative to the DI method (∼6–15 nmol mol−1). The reliability of the GC–MS method was further validated through an analysis of real environmental samples collected from an industrial area.  相似文献   

7.
A needle trap device (NTD) packed with silica composite of multi-walled carbon nanotubes (MWCNTs) prepared based on sol–gel technique was utilized for sampling and analysis of volatile organohalogen compounds (HVOCs) in air. The performance of the NTD packed with MWCNTs/silica composite as sorbent was examined in a variety of sampling conditions and was compared with NTDs packed with PDMS as well as SPME with Carboxen/PDMS-coated fibers. The limit of detection of NTDs for the GC/MS detection system was 0.01–0.05 ng mL−1 and the limit of quantitation was 0.04–0.18 ng mL−1. The RSD were 1.1–7.8% for intra-NTD comparison intended for repeatability of technique. The NTD-MWCNTs/silica composite showed better analytical performances compared to the NTD-PDMS composite and had the same analytical performances when compared to the SPME-Carboxen/PDMS fibers. The results show that NTD-MWCNTs-GC/MS is a powerful technique for active sampling of occupational/environmental pollutants in air.  相似文献   

8.
Mutagenic and carcinogenic heterocyclic amines (HCAs) are formed during heating of various proteinaceous foods, but human exposure to HCAs has not yet been elucidated in detail. To assess long-term exposure to HCAs, we developed a simple and sensitive method for measuring HCAs in hair by automated on-line in-tube solid-phase microextraction (SPME) coupled with liquid chromatography–tandem mass spectrometry (LC–MS/MS). Using a Zorbax Eclipse XDB-C8 column, 16 HCAs were analyzed within 15 min. The optimum in-tube SPME conditions were 20 draw/eject cycles of 40 μL sample at a flow rate of 200 μL min−1 using a Supel-Q PLOT capillary column as an extraction device. The extracted HCAs were easily desorbed from the column by passage of the mobile phase, with no carryover observed. This in-tube SPME LC–MS/MS method showed good linearity for HCAs in the range of 10–2000 pg mL−1, with correlation coefficients above 0.9989 (n = 18), using stable isotope-labeled HCA internal standards. The detection limits (S/N = 3) of 14 HCAs except for MeAαC and Glu-P-1 were 0.10–0.79 pg mL−1. This method was successfully utilized to analyze 14 HCAs in hair samples without any interference peaks, with quantitative limits (S/N = 10) of about 0.17–1.32 pg mg−1 hair. Using this method, we evaluated the exposure to HCAs in cigarette smoke and the suitability of using hair HCAs as exposure biomarkers.  相似文献   

9.
Quantitation of trace levels of domoic acid (DA) in seawater samples usually requires labour-intensive protocols involving chemical derivatization with 9-fluorenylmethylchloroformate and liquid chromatography with fluorescence detection (FMOC–LC–FLD). Procedures based on LC–MS have been published, but time-consuming and costly solid-phase extraction pre-concentration steps are required to achieve suitable detection limits. This paper describes an alternative, simple and inexpensive LC method with ultraviolet detection (LC–UVD) for the routine analysis of trace levels of DA in seawater without the use of sample pre-concentration or derivatization steps. Qualitative confirmation of DA identity in dubious samples can be achieved by mass spectrometry (LC–MS) using the same chromatographic conditions. Addition of an ion-pairing/acidifying agent (0.15% trifluoroacetic acid) to sample extracts and the use of a gradient elution permitted the direct analysis of large sample volumes (100 μl), resulting in both high selectivity and sensitivity (limit of detection = 42 pg ml−1 by LC–UVD and 15 pg ml−1 by LC–MS). Same-day precision varied between 0.4 and 5%, depending on the detection method and DA concentration. Mean recoveries of spiked DA in seawater by LC–UVD were 98.8% at 0.1–10 ng ml−1 and 99.8% at 50–1000 ng ml−1. LC–UVD exhibited strong correlation with FMOC–LC–FLD during inter-laboratory analysis of Pseudo-nitzschia multiseries cultures containing 60–2000 ng DA ml−1 (r2 > 0.99), but more variable results were obtained by LC–MS (r2 = 0.85). This new technique was used to confirm the presence of trace DA levels in low-toxicity Pseudo-nitzschia spp. isolates (0.2–1.6 ng ml−1) and in whole-water field samples (0.3–5.8 ng ml−1), even in the absence of detectable Pseudo-nitzschia spp. cells in the water column.  相似文献   

10.
A simple and sensitive method for the determination of patulin in fruit juice and dried fruit samples was developed using a fully automated method consisting of in-tube solid-phase microextraction (SPME) coupled with liquid chromatography–mass spectrometry (LC–MS). Patulin was separated within 5 min by high-performance liquid chromatography using a Synergi MAX-RP 80A column and water/acetonitrile (80/20, v/v) as the mobile phase. Electrospray ionization conditions in the negative ion mode were optimized for MS detection of patulin. The pseudo-molecular ion [M−H] was used to detect patulin in selected ion monitoring (SIM) mode. The optimum in-tube SPME conditions were 25 draw/eject cycles of 40 μL of sample using a Carboxen 1006 PLOT capillary column as an extraction device. The extracted patulin was readily desorbed from the capillary by passage of the mobile phase, and no carry-over was observed. Using the in-tube SPME LC–MS with SIM method, good linearity of the calibration curve (r = 0.9996) was obtained in the concentration range of 0.5–20 ng/mL using 13C3-patulin as an internal standard, and the detection limit (S/N = 3) of patulin was 23.5 pg/mL. The in-tube SPME method showed >83-fold higher sensitivity than the direct injection method (10 μL injection volume). The within-day and between-day precision (relative standard deviations) were below 0.8% and 5.0% (n = 6), respectively. This method was applied successfully for the analysis of fruit juice and dried fruit samples without interference peaks. The recoveries of patulin spiked into apple juice were >92%, and the relative standard deviations were <4.5%. Patulin was detected at ng/mL levels in various commercial apple juice samples.  相似文献   

11.
In this work, a C18 composite solid-phase microextraction (SPME) fiber was prepared with a new method and applied to the analysis of organochlorine pesticides (OCPs) in water sample. A stainless steel wire (o.d. 127 μm) was used as the substrate, and a mixture of the C18 particle (3.5 μm) and the 184 silicone was used as the coating material. During the process of fiber preparation, a section of capillary column was used to fix the mixture onto the stainless steel wire and to ensure the constant of coating thickness. The prepared fiber showed excellent thermal stability and solvent resistance. By coupling with gas chromatography–mass spectrometry (GC–MS), the fiber exhibited wide linearity (2–500 ng L−1) and good sensitivity for the determination of six OCPs in water samples, the OCPs tested included hexachlorobezene, trans-chlordane, cis-chlordane, o,p-DDT, p,p-DDT and mirex. Not only the extraction performance of the newly prepared fiber was more than seven times higher than those of commercial fibers, the limits of detections (LODs) (0.059–0.151 ng L−1) for OCPs achieved under optimized conditions were also lower than those of reported SPME methods. The fiber was successfully applied to the determination of OCPs in real water samples by using developed SPME–GC–MS method.  相似文献   

12.
A simple and sensitive automated method for determination of aflatoxins (B1, B2, G1, and G2) in nuts, cereals, dried fruits, and spices was developed consisting of in-tube solid-phase microextraction (SPME) coupled with liquid chromatography–mass spectrometry (LC–MS). Aflatoxins were separated within 8 min by high-performance liquid chromatography using a Zorbax Eclipse XDB-C8 column with methanol/acetonitrile (60/40, v/v): 5 mM ammonium formate (45:55) as the mobile phase. Electrospray ionization conditions in the positive ion mode were optimized for MS detection of aflatoxins. The pseudo-molecular ions [M+H]+ were used to detect aflatoxins in selected ion monitoring (SIM) mode. The optimum in-tube SPME conditions were 25 draw/eject cycles of 40 μL of sample using a Supel-Q PLOT capillary column as an extraction device. The extracted aflatoxins were readily desorbed from the capillary by passage of the mobile phase, and no carryover was observed. Using the in-tube SPME LC–MS with SIM method, good linearity of the calibration curve (r > 0.9994) was obtained in the concentration range of 0.05–2.0 ng/mL using aflatoxin M1 as an internal standard, and the detection limits (S/N = 3) of aflatoxins were 2.1–2.8 pg/mL. The in-tube SPME method showed >23-fold higher sensitivity than the direct injection method (10 μL injection volume). The within-day and between-day precision (relative standard deviations) at the concentration of 1 ng/mL aflatoxin mixture were below 3.3% and 7.7% (n = 5), respectively. This method was applied successfully to analysis of food samples without interference peaks. The recoveries of aflatoxins spiked into nuts and cereals were >80%, and the relative standard deviations were <11.2%. Aflatoxins were detected at <10 ng/g in several commercial food samples.  相似文献   

13.
Solid phase microextraction (SPME) was characterized for the sampling and analysis of sesquiterpenes (SQTs) emitted by plants. Constant mixing ratio SQT standards were produced using a capillary diffusion system. Polydimethylsiloxane SPME fibers were characterized with respect to relative absorption of SQTs, and the effects of sample linear velocity and sample relative humidity on SQT absorption. SPME was then utilized to measure SQT emissions from gray pine (Pinus sabiniana) and ponderosa pine (Pinus ponderosa). Total SQT emission rates at a photosynthetic photon flux density of 1200 μmol m−2 s−1 and 28 °C ranged 0.025–0.050 μgC m−2 h−1 (α-farnesene) and 0.450–3.325 μgC m−2 h−1 (α-farnesene, β-farnesene, and α-bergamotene) for gray pine and ponderosa pine, respectively.  相似文献   

14.
For low volatile pesticides, the applications of solid-phase microextraction (SPME) as an air sampler were reported with sampling time chosen in the linear stage of the sorption kinetics because of long equilibrium time. In these pre-equilibrium conditions, sampling rates (SRs) expressed as the volume of air sampled by the SPME sampler per unit of time, were used to estimate analytes concentrations in air. In the present study, to achieve good extraction performance and accurate calibration, the sorption kinetics of several pesticides with SPME were investigated in detail, with a focus on parameters influencing SRs. Linear air velocity was found to be the main parameter affecting SRs. For exposed fibers, with air velocities below 20–25 cm s−1, SRs increased with increasing air velocity. When linear air velocity was equal to or greater than 25–30 cm s−1, it had little effect on SRs. To improve the flexibility of SPME, different configurations of SPME were compared, i.e. different lengths of fibers exposed, retracted fibers, exposed fibers with grids. SRs were linearly proportional to exposed lengths of fibers. Using grids, lower SRs and wider calibration time range were achieved. SRs for retracted fibers were the lowest among the different experimented configurations. The accuracy of calibration was improved and more flexibility of SPME was provided.  相似文献   

15.
A new line of solid-phase microextraction (SPME) coatings suitable for use with liquid chromatography applications was recently developed to address the limitations of the currently available coatings. The proposed coatings were immobilized on the metal fiber core and consisted of a mixture of proprietary biocompatible binder and various types of coated silica (octadecyl, polar embedded and cyano) particles. The aim of this research was to perform in vitro assessment of these new SPME fibers in order to evaluate their suitability for drug analysis and in vivo SPME applications. The main parameters examined were extraction efficiency, solvent resistance, preconditioning, dependence of extraction kinetics on coating thickness, carryover, linear range and inter-fiber reproducibility. The performance of the proposed coatings was compared against commercial Carbowax-TPR (CW-TPR) coating, when applicable. The fibers were evaluated for the extraction of drugs of different classes (carbamazepine, propranolol, pseudoephedrine, ranitidine and diazepam) from plasma and urine. The analyses were performed using liquid chromatography-tandem mass spectrometry. The results show that the fibers perform very well for the extraction of biological fluids with no sample pre-treatment required and can also be used for in vivo sampling applications of flowing blood. A coating thickness of 45 μm was found to be a good compromise between extraction capacity and extraction kinetics. Due to the high extraction efficiency of these coatings, pre-equilibrium SPME with very short extraction times (2 min) can be employed to increase sample throughput. Inter-fiber reproducibility was ≤11% R.S.D. (n = 10) for model drugs examined in plasma, which is a significant improvement over polypyrrole coatings reported in literature, and permits single fiber use for in vivo applications.  相似文献   

16.
A new fiber for solid-phase microextraction (SPME) was prepared employing cork as a coating. The morphology and composition of the cork fiber was evaluated by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR), respectively. The proposed fiber was used for the determination of polycyclic aromatic hydrocarbons (PAHs) in river water samples by gas chromatography–selected ion monitoring–mass spectrometry (GC–SIM–MS). A central composite design was used for optimization of the variables involved in the extraction of PAHs from water samples. The optimal extraction conditions were extraction time and temperature of 60 min and 80 °C, respectively. The detection and quantification limits were 0.03 and 0.1 μg L−1, respectively. The recovery values were between 70.2 and 103.2% and the RSD was ≤15.7 (n = 3). The linear range was 0.1–10 μg L−1 with r ≥ 0.96 and the fiber-to-fiber reproducibility showed RSD ≤ 18.6% (n = 5). The efficiency of the cork fiber was compared with commercially available fibers and good results were achieved, demonstrating the applicability and great potential of cork as a coating for SPME.  相似文献   

17.
The primary objective of this review is to discuss recent technological developments in the field of solid-phase microextraction that have enhanced the utility of this sample preparation technique in the field of bioanalysis. These developments include introduction of various new biocompatible coating phases suitable for bioanalysis, such as commercial prototype in vivo SPME devices, as well as the development of sampling interfaces that extend the use of this methodology to small animals such as mice. These new devices permit application of in vivo SPME to a variety of analyses, including pharmacokinetics, bioaccumulation and metabolomics studies, with good temporal and spatial resolution. New calibration approaches have also been introduced to facilitate in vivo studies and provide fast and quantitative results without the need to achieve equilibrium. In combination with the drastic improvement in the analytical sensitivity of modern liquid chromatography–tandem mass spectrometry instrumentation, full potential of in vivo SPME as a sample preparation tool in life sciences can finally be explored. From the instrumentation perspective, SPME was successfully automated in 96-well format for the first time. This opens up new opportunities for high-throughput applications (>1000 samples/day) such as for the determination of unbound and total drug concentrations in complex matrices such as whole blood with no need for sample pretreatment, studies of distribution of drugs in various compartments and/or determination of plasma protein binding and other ligand–receptor binding studies, and this review will summarize the progress in this research area to date.  相似文献   

18.
Solid-phase microextraction (SPME) has been demonstrated to be useful for in vivo sampling in pharmacokinetic studies. In this study, a single time-point kinetic calibration for in vivo dynamic monitoring was developed by simplification of the laborious multiple time-point kinetic calibration, based on the independent desorption kinetics of the preloaded standards from SPME fibers with the changing analyte concentrations. The theoretical foundation and practical application conditions, such as the replicate numbers, the optimal time-point for desorption, and the sampling time, were systematically investigated. Furthermore, the feasibility of using regular standards rather than deuterated ones for the kinetic calibration was justified by comparing to the data obtained using the deuterated standards. All the methods were verified by in vitro and in vivo experiments. The results from in vivo SPME were validated by the blood drawing and chemical assay. These simplified calibration methods improved the quantitative applications of SPME for dynamic monitoring and in vivo sampling, enhance the multiplexing capability and automatic potentials for high throughput analysis, and decrease expenses on reagents and instruments.  相似文献   

19.
A solid-phase microextraction (SPME) method for the determination of five amphetamine type stimulants (ATSs) in water and urine samples is presented. Analytes were simultaneously derivatized with iso-butyl chloroformate (iBCF) in the aqueous sample while being extracted, improving in this way the extractability of ATSs and permitting their determination by gas chromatography–mass spectrometry (GC–MS). The SPME procedure was carefully optimized in order to achieve adequate limits of detection (LODs) for environmental concentrations. Hence, different operational parameters were considered: type of SPME coating, ionic strength, basic catalyzer and derivatizing agent amount, extraction time and temperature. The final SPME procedure consists into the extraction of 100 mL of sample containing 2 g of dipotassium monohydrogen phosphate trihydrate and 100 μL of iBCF (1:1 in acetonitrile), for 40 min at 60 °C with a polydimethylsiloxane-divinylbenzene (PDMS-DVB) fiber. Under these conditions, LODs in wastewater ranged from 0.4 to 2 ng L−1, relative recoveries in the 84–114% range and relative standard deviations (RSD) lower than 15% were obtained. The application of the method to wastewater and river water samples showed the ecstasy ATS, 3,4-methylenedioxymethamphetamine (MDMA), as the most frequently detected, followed by methamphetamine, in concentrations around 20 ng L−1. Finally, the method was downscaled and also validated with urine samples, proving its good performance with this matrix too: RSD < 11%, recoveries in the 98–110% range and LODs lower than 0.1 μg L−1.  相似文献   

20.
In this work, a headspace-solid-phase micro-extraction (HS-SPME) combined with gas chromatography–mass spectrometry (GC–MS) method for multielemental speciation of organometallic compounds of mercury, lead and tin in water samples was upgraded by the introduction of tandem mass spectrometry (MS/MS) as detection technique. The analytical method is based on the ethylation with NaBEt4 and simultaneous headspace-solid-phase micro-extraction of the derivative compounds followed by GC–MS/MS analysis. The main experimental parameters influencing the extraction efficiency such as derivatisation time, extraction time and extraction temperature were optimized. The overall optimum extraction conditions were the following: a 50 μm/30 μm divinyl-benzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) SPME fibre, 150 min derivatisation time, 15 min extraction time, sample agitation at 250 rpm and 40 °C extraction temperature. The analytical characteristics of the HS-SPME method combined with GC–MS and GC–MS/MS were evaluated. The combination of both techniques HS-SPME and GC–MS/MS allowed to attain lower limits of detection (4–33 ng l−1) than those obtained by HS-SPME–GC–MS (17–45 ng l−1). The proposed method presented good linear regression coefficients (r2 > 0.9970) and repeatability (4.8–21.0%) for all the compounds under study. The accuracy of the method measured as the average percentage recovery of the compounds in spiked river water and seawater samples was higher than 80% for all the compounds studied, except for monobutyltin in the river water sample. A study of the uncertainty associated with the analytical results was also carried out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号