首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   0篇
化学   5篇
物理学   30篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   3篇
  2017年   2篇
  2016年   1篇
  2014年   2篇
  2013年   2篇
  2012年   2篇
  2011年   3篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2005年   3篇
  2004年   1篇
  2002年   1篇
  1983年   1篇
  1978年   1篇
  1974年   2篇
  1972年   1篇
排序方式: 共有35条查询结果,搜索用时 375 毫秒
1.
2.

Present work describes investigations of a two-step process consisting of galvanostatic anodising in a 1 M H2SO4 solution at 100 mA cm−2 up to the limiting voltages of 20, 60, 80, 100 and 120 V, directly after which potentiostatic regime was employed and the current was allowed to drop. The total treatment time (5 min) was held constant for all samples. The treatment was carried out to improve the corrosion resistance of zirconium in physiological conditions, which was determined by electrochemical evaluation in Ringer’s solution. XPS studies revealed that after anodising sulphur was incorporated into the oxide film in the form of sulphated zirconia. The maximum content of sulphate in the oxide layer was observed after anodising at 80 V. Anodising at higher voltages resulted in formation of coatings with decreasing amount of sulphur. It was found that there is a strong correlation between the sulphur content in the oxide layers and the measured corrosion current density. On the other hand, the pitting corrosion resistance seemed to be unaffected by the presence of S and it was improving with the increasing limiting voltage of the treatment.

  相似文献   
3.
4.
The processes involved in the excited-state relaxation of hole O 1 0 centers at nonbridging oxygen atoms in glassy SiO2 were studied using luminescence, optical absorption, and photoelectron emission spectroscopy. An additional nonradiative relaxation channel, in addition to the intracenter quenching of the 1.9-eV luminescence band, was established to become operative at temperatures above 370 K. This effect manifests itself in experiments as a negative deviation of the temperature-dependent luminescence intensity from the well-known Mott law and is identified as thermally activated external quenching with an energy barrier of 0.46 eV. Nonradiative transitions initiate, within the external quenching temperature interval, the migration of excitation energy, followed by the creation of free electrons. In the final stages, this relaxation process becomes manifest in the form of spectral sensitization of electron photoemission, which is excited in the hole O 1 0 -center absorption band.  相似文献   
5.
A time-resolved cathodo-and photoluminescence study of nanostructural modifications of Al2O3 (powders and ceramics) excited by heavy-current electron beams, as well as by pulsed synchrotron radiation, is reported. It was found that Al2O3 nanopowders probed before and after Fe+ ion irradiation have the same phase composition (the γ-phase/δ-phase ratio is equal to 1), an average grain size equal to ~17 nm, and practically the same set of broad cathodoluminescence (CL) bands peaking at 2.4, 3.2, and 3.8 eV. It was established that Al2O3 nanopowders exhibit fast photoluminescence (PL) (a band at 3.2 eV), whose decay kinetics is described by two exponential stages (τ1 = 0.5 ns, τ2 = 5.5 ns). Three bands, at 5.24, 6.13, and 7.44 eV, were isolated in the excitation spectrum of the fast PL. Two alternate models of PL centers were considered, according to which the 3.2-eV luminescence either originates from radiative relaxation of the P? centers (anion-cation vacancy pairs) or is due to the formation of surface analogs of the F+ center (F S + -type centers). In addition to the fast luminescence, nano-Al2O3 was found to produce slow luminescence in the form of a broad band peaking at 3.5 eV. The excitation spectrum of the 3.5-eV luminescence obtained at T = 13 K exhibits two doublet bands with maxima at 7.8 and 8.3 eV. An analysis of the luminescent properties of nanostructural and single-crystal Al2O3 suggests that the slow luminescence of nanopowders at 3.5 eV is due to radiative annihilation of excitons localized near structural defects.  相似文献   
6.
Russian Physics Journal - The paper studies the α-phase formation and structure of Al2O3 coatings deposited by the anodic arc evaporation in the low temperature range of...  相似文献   
7.
Zhidkov  I. S.  Belik  A. A.  Kukharenko  A. I.  Cholakh  S. O.  Taran  L. S.  Fujimori  A.  Streltsov  S. V.  Kurmaev  E. Z. 《JETP Letters》2021,114(9):556-560
JETP Letters - The results of full study of X-ray photoelectron spectra (XPS) of spin-liquid candidate CuAl2O4 including the measurements of high-energy resolved core level (Cu $$2p$$ , Al $$3p$$ ,...  相似文献   
8.
Silica glasses exposed to steady-state and pulsed irradiation with Fe+ ions are studied using magnetic resonance. The irradiation doses used in experiments are equal to 1 × 1015, 1 × 1016, and 1 × 1017 cm?2. It is found that, under both steady-state and pulsed irradiation conditions, glass samples exposed at a dose of 1 × 1017 cm?2 exhibit a broadband orientation-dependent signal. The shape of inclusions is evaluated under the assumption that the observed spectrum is caused by the ferromagnetic resonance induced in a new phase of metallic iron.  相似文献   
9.
The possibility of developing a luminescence technique for phase composition analysis is demonstrated via the example of bi-phase yttria nanopowders doped with neodymium ions. The deviation from X-ray diffraction reference values is ±2%. It is found that the results depend on the inhomogeneity of the crystalline phase distribution within a sample’s bulk, rather than on the luminescence scattering by powder nanoparticles. A luminescence coefficient that determines the phase inhomogeneity in nanopowders is introduced.  相似文献   
10.
The results of coordinated spectroscopic studies of the nature and properties of electronic excitations localized at regular and defect sites of the Be2SiO4 lattice are presented. The methods employed are electron-beam-excited pulsed absorption spectroscopy, pulsed cathodoluminescence, and low-temperature VUV spectroscopy with selective excitation by synchrotron radiation. The bands in luminescence spectra of Be2SiO4 at 2.70 and 3.15 eV are assigned to [AlO4]5? and [SiO4]4? centers formed both in direct relaxation of electronic excitations at defect levels and through the formation of exciton-defect complexes. Disruptions of beryllium-oxygen bonds (short-lived defects in the form of beryllium vacancies V Be ? ) are considered as initiating the formation of optically active centers with characteristic absorption bands in the range 1.5–4.0 eV. The intrinsic luminescence of the Be2SiO4 crystal at 3.6 and 4.1 eV is attributed to radiative decay of self-trapped excitons of two types. A mechanism of exciton self-trapping at the [SiO4] and [BeO4] tetrahedral groups is proposed, which involves excitation transfer from a threefold-coordinated oxygen atom to neighboring silicon or beryllium atoms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号