首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1176篇
  免费   25篇
  国内免费   5篇
化学   768篇
晶体学   6篇
力学   27篇
数学   168篇
物理学   237篇
  2022年   5篇
  2021年   27篇
  2020年   29篇
  2019年   20篇
  2018年   25篇
  2017年   16篇
  2016年   36篇
  2015年   24篇
  2014年   50篇
  2013年   92篇
  2012年   80篇
  2011年   93篇
  2010年   48篇
  2009年   63篇
  2008年   78篇
  2007年   57篇
  2006年   66篇
  2005年   65篇
  2004年   44篇
  2003年   41篇
  2002年   28篇
  2001年   10篇
  2000年   11篇
  1999年   15篇
  1998年   9篇
  1997年   5篇
  1996年   15篇
  1995年   8篇
  1994年   17篇
  1993年   7篇
  1992年   6篇
  1991年   5篇
  1990年   5篇
  1989年   11篇
  1987年   9篇
  1986年   9篇
  1985年   11篇
  1984年   4篇
  1983年   5篇
  1982年   5篇
  1981年   7篇
  1980年   6篇
  1979年   3篇
  1978年   3篇
  1977年   4篇
  1976年   3篇
  1973年   3篇
  1968年   3篇
  1967年   2篇
  1920年   2篇
排序方式: 共有1206条查询结果,搜索用时 15 毫秒
1.
Journal of Thermal Analysis and Calorimetry - To prepare a commercial product with economic and technical relevance, polyvinyl acetate (PVAc) was synthesized, under our laboratory conditions,...  相似文献   
2.
Convolutional neural networks utilize a hierarchy of neural network layers. The statistical aspects of information concentration in successive layers can bring an insight into the feature abstraction process. We analyze the saliency maps of these layers from the perspective of semiotics, also known as the study of signs and sign-using behavior. In computational semiotics, this aggregation operation (known as superization) is accompanied by a decrease of spatial entropy: signs are aggregated into supersign. Using spatial entropy, we compute the information content of the saliency maps and study the superization processes which take place between successive layers of the network. In our experiments, we visualize the superization process and show how the obtained knowledge can be used to explain the neural decision model. In addition, we attempt to optimize the architecture of the neural model employing a semiotic greedy technique. To the extent of our knowledge, this is the first application of computational semiotics in the analysis and interpretation of deep neural networks.  相似文献   
3.
4.
Synthetic and biological gels undergo a sharp volume phase transition when subjected to a variety of environmental changes. Water and ion dynamics within swollen and compact phases are critical for understanding fundamental concepts in cellular (specifically neuronal) biophysics, for models of bound, free, or ordered water in complex environments; and for practical applications such as the design of gels for drug release, biomimetics, sensors, or actuators. In this work, we find, for the first time, basic physical parameters that shed light on the interaction of gels with water and electrolytes, across a volume phase transition. Water within a gel can be separated into bound and free populations with high exchange rate. We show that free water dynamics in compact gels are the same as those in pure water. Bound water was found to comprise a single layer around the polymers in both phases, with a correlation time three orders of magnitude higher than that of free water. Most importantly, salt‐induced phase transition was found to be different from a standard coil‐globule transition (e.g., temperature‐induced), with no rejection of bound water as the gel compacts. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1620–1628  相似文献   
5.
This work reveals ambident nucleophilic reactivity of imidazolium cations towards carbonyl compounds at the C2 or C4 carbene centers depending on the steric properties of the substrates and reaction conditions. Such an adaptive behavior indicates the dynamic nature of organocatalysis proceeding via a covalent interaction of imidazolium carbenes with carbonyl substrates and can be explained by generation of the H-bonded ditopic carbanionic carbenes.  相似文献   
6.
7.
8.
Russian Chemical Bulletin - Dynamic light scattering and size exclusion chromatography were used to investigate the size of sodium lignosulfonate particles in water—ethanol media and the...  相似文献   
9.
This contribution investigates thermal decomposition of leucine, as a representative model compound for amino acids in algal biomass. We map out potential energy surface for a wide array of unimolecular and self-condensation reactions operating in the decomposition of leucine. Decarboxylation and dehydration of leucine ensues by eliminating CO2 and –OH, respectively, from the –COOH group attached to the α-carbon. The molecular channel for deamination involves cleavage of NH2 from α-carbon of leucine. The activation energies for direct elimination of CO2, NH3, and H2O from a leucine molecule lie within 20.7 kJ/mol of each other. Activation energies for these decomposition pathways reside below the bond dissociation enthalpy of H–C(α) of 323.1 kJ/mol. The decarboxylation, deamination, and dehydration pathways, via radical-prompted pathways, systematically require lower energy barriers, in reference to closed-shell reaction corridors. Detailed computations at the CBS-QB3 level provide the Arrhenius rate parameters for the unimolecular and bimolecular reactions, and standard enthalpies of formation, standard entropies, and heat capacities for all the products and intermediates. A kinetic analysis of gas-phase reactions, within the context of a plug-flow reactor model, accounts qualitatively for the formation of major products observed experimentally in the thermal degradation of the condensed-phase leucine. Among notable N-containing species, the model predicts the prevailing of NH3 over HCN and HNCO, in addition to corresponding appreciable concentrations of amines, imines, and nitriles. Our detailed kinetic investigation illustrates a negligible contribution of the self-condensation reactions of leucine in the gas phase.  相似文献   
10.
Numerical Algorithms - In this note, we present two new algorithms for the Steinitz Exchange Lemma. They are grounded on a single application of a procedure (finding either a row echelon form or a...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号