首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   2篇
化学   19篇
晶体学   1篇
物理学   3篇
  2018年   2篇
  2017年   1篇
  2016年   4篇
  2015年   2篇
  2014年   6篇
  2013年   1篇
  2011年   2篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
排序方式: 共有23条查询结果,搜索用时 31 毫秒
1.
2.
3.
4.
The complex of propyltriphenylphosphonium bromochromate(VI), PrPh3P[CrO3Br] is easily synthesized in nearly quantitative yield using a direct reaction of chromium(VI) oxide and propyltriphenylphosphonium bromide. This compound is a versatile reagent for the efficient and selective oxidation of organic substrates, in particular for alcohols to their corresponding aldehydes or ketones, under mild conditions. This compound was characterized by IR, UV/Visible, 13C-n.m.r. and 1H-n.m.r. techniques. It crystallized in the monoclinic form and its crystal and molecular structure have been determined by X-ray crystallography.  相似文献   
5.
The distribution of charge within the wall fouling region and bulk of a fluidized bed reactor was investigated. Experiments were conducted in a 0.1 m in diameter carbon steel fluidization column under atmospheric conditions. Polyethylene particles were fluidized with extra dry air at 1.5 the minimum fluidization velocity (bubbling flow regime) for 1 h. Using an online Faraday cup measurement technique, the net charge-to-mass ratio (q/m), as well as the size distribution of all particles adhered to the column wall and those in the bulk of the bed was determined. The wall particles were found to be predominantly negatively charged while those which did not adhere to the wall were predominantly positively charged. The charge distribution within each region was then investigated by a custom made charged particle separator that separated the particles according to their charge magnitude and polarity. It was determined that although the net charge of the wall layer particles was negative, a significant amount of positively charged particles existed within each sample and therefore the entire wall particle layer. This suggests that the wall layer was formed through layering between positively and negatively charged particles. Particles in the bulk of the bed also consisted of bipolarly charged particles.  相似文献   
6.
In this paper, electron beam (e-beam) reduction method is applied for the catalyst layer preparation in the growth of carbon nanotubes (CNTs). A hot cathodic electron beam facility was employed to electron bombarding of catalyst layer before stage of CNTs growth. This new method leads to reducing the diameter of particles via sputtering and evaporating the surface of catalyst. The growth of CNTs was performed on the Fe catalyst layer with SiO2 substrate in an environment of different mixed gases (H2, NH3 and C2H2) by thermal chemical vapor deposition (TCVD) system. The morphology of the electron beam reduced catalyst particles were probed by atomic force microscopy (AFM). All samples were analyzed by scanning electron microscopy (SEM) before and after growth of CNTs. SEM analyses clarified that the catalyst grains have been smaller under effect of electron beam bombardment.  相似文献   
7.
Graphene nanosheets were modified with amino groups and the resulting material was used as a sorbent for the extraction of cadmium and lead ions. The nanosheets were characterized by IR spectroscopy, transmission electron microscopy, thermal gravimetric analysis and elemental analysis. The effects of sample pH, eluent parameters (type, concentration and volume of eluent), flow rates (of both sample and eluent), and of a variety of other ions on the efficiency of the extraction of Cd(II) and Pb(II) were optimized. Following solid phase extraction, the elements were determined by FAAS. The limits of detection are <0.9 μg L?1 for Pb(II) and <5 ng L?1 for Cd(II). The relative standard deviations are <2.2 %. The method was validated by analyzing several certified reference materials and was then used for Pb(II) and Cd(II) determination in natural waters and vegetables.
Figure
In this work, grapheme oxide nanosheets were modified with amino and tri-amino groups and their application were investigated in Cd(II) and Pb(II) determination in food sample. The results show high preconcentration factor and adsorption capacities for these nanosheets.  相似文献   
8.
A simple and efficient one‐pot four‐component procedure has been developed for the synthesis of a wide range of compounds containing the (triazolyl)methyl oxo‐pyrimidine‐carboxylate system from propargyl β‐keto esters, various azides, aldehydes, and urea in the presence of catalytic amounts of (AcO)2Cu/sodium ascorbate in AcOH. The method worked well with different aryl and heteroaryl aldehydes, and for a variety of substituents in the triazolyl part of the molecule. The antimicrobial activities of the products were evaluated against two Gram‐positive and Gram‐negative bacteria, and one fungus. Compound 5j was active against Staphylococcus aureus and Candida albicans.  相似文献   
9.
An ion imprinted polymer coated onto magnetite (Fe3O4) nanoparticles is shown to be a useful magnetic sorbent for the fairly selective preconcentration of vanadium. The sorbent was prepared by radical copolymerization of 3-(triethoxysilyl)propyl methacrylate (the monomer), ethylene glycol dimethacrylate (the cross-linker), and the vanadium(IV) complex of 1-(2-pyridylazo-2-naphthol) in the presence of magnetite nanoparticles. The material was characterized by IR spectroscopy, scanning electron microscopy, and thermal analysis. The vanadium(IV) ions were removed from the imprint by a solution containing thiourea and HCl, and the eluent was submitted to AAS. The analytical efficiency and relative standard deviation are 99.4 and ±2.3 %, respectively, under optimum conditions, and the limit of detection is 20 ng mL?1. The method was successfully applied to the preconcentration and determination of vanadium(IV) ions in crude oil. Figure
An ion imprinted polymer is coated on to magnetite nanoparticles as a useful magnetic sorbent for the fairly selective preconcentration of vanadium which can be used for vanadium determination in crude oil.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号