首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  国内免费   4篇
化学   7篇
  2021年   1篇
  2019年   4篇
  2018年   2篇
排序方式: 共有7条查询结果,搜索用时 0 毫秒
1
1.
本文通过原位聚合方法成功制备了聚苯胺改性的碳纳米纤维(PANI@CNF)复合材料,并用于水溶液中放射性核素铀(U(VI))的高效去除.扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)、傅里叶红外光谱(FTIR)和X射线光电子能谱(XPS)等表征证明所制备的材料具有丰富的官能团和优良的物理化学性质.批实验方法系统研究了周围环境(pH、背景电解液、反应时间和温度)的变化对U(Ⅵ)去除结果的影响.结果表明,pH对于U(Ⅵ)去除影响很大,而离子强度没有影响,表明二者之间的作用机理为内层表面络合.吸附能够在30 min内快速达到平衡,且符合拟二级动力学模型.吸附等温线符合Langmuir等温线,表明U(Ⅵ)的去除是单分子层均匀吸附过程.在pH=5.0和T=298 K时, PANI@CNF对U(Ⅵ)的最大吸附量高达319.4 mg/g,远远高于单纯的CNF(133.9 mg/g). U(Ⅵ)主要与材料表面的含氮和含氧官能团形成了稳定的内层络合物,从而达到高效去除的目的.以上分析表明, PANI@CNF具有快速反应动力学和高效吸附能力,可以作为放射性核素高效去除的潜在储备材料,为我国核废料治理工作提供理论依据.  相似文献   
2.
四氧化三铁(Fe_3O_4)纳米材料因比表面积大、功能基团多、活性强、便于磁性分离等优点,在吸附和分离放射性元素及重金属离子方面显示出了广阔的应用前景。然而,该材料也存在着易团聚、分散性差、化学稳定性差等局限性,这些缺点可通过表面功能化修饰得到大大改善。本文概括了四氧化三铁基纳米复合材料合成方法的特性、优越性和局限性,综述了水体放射性元素及重金属离子污染去除研究中的磁性纳米材料的类型,归纳总结并比较了功能性磁性纳米材料对不同种类的放射性元素及重金属离子的去除能力及优缺点,探讨了四氧化三铁基纳米材料在放射性元素和重金属离子污染去除中的应用并对其机理进行了分析,对功能化磁性纳米材料在去除放射性元素及重金属离子污染水体治理中的应用前景进行了展望。  相似文献   
3.
随着民用核工业的发展,"核污染"日益成为关注的焦点.放射性核素在环境介质上的界面吸附研究有助于人们深入了解放射性核素在环境中的扩散、迁移和转化规律,从而对它们进行有效的处理和管控.金属氧化物材料,具有来源广泛、成本低廉、环境友好、吸附容量大等优点,近年来在放射性核素去除和污染治理方面展现出巨大的潜力.本文主要论述了近五年来常用的金属氧化物材料,如四氧化三铁、双金属氧化物、二氧化钛和氧化铝等对放射性核素的去除行为.通过宏观吸附批试验、表面配位模型、光谱分析和理论计算等方法验证了金属氧化物材料与放射性核素之间的作用机理,并简要探讨了金属氧化物材料在环境放射性污染治理中的应用前景,以期为今后的深入研究和实际应用提供参考依据.  相似文献   
4.
石磊  庞宏伟  王祥学  张盼  于淑君 《化学学报》2019,77(11):1177-1183
氧化石墨烯(GO)由于具有优异的物理化学性质,被广泛应用于能源化工、环境修复、纳米材料、液相催化等领域.与此同时,GO在应用的过程中不可避免会排放到自然界中,释放到环境中的毒性可能导致生物系统的不稳定性.因此,本文系统研究了几种常见阳离子(Na+、K+、Ca2+、Mg2+),阴离子(PO43-、SO42-、CO32-、HCO3-、Cl-)和粘土矿物(蒙脱石、高岭土、膨润土、纳米氧化铝)在不同浓度下对GO聚沉的影响,并以FTIR表征聚沉GO前后的粘土矿物.实验结果表明,阳离子具有较强的GO聚沉能力,且不同价态阳离子的聚沉能力有着较大差异.经分析,GO在水溶液中的电性为负,阳离子作为反离子,聚沉行为符合Schulze-Hardy规则,同价态阳离子间聚沉能力存在差异的主要原因是电负性和离子的水合作用.阴离子则起到增加GO水溶液稳定性的作用,且阳离子的聚沉作用高于阴离子的稳定作用.具有相同价态阴离子的钠盐聚沉GO的能力也存在差异,主要原因是HCO3-和CO32-的水解作用使得其负电荷数降低,稳定GO的能力下降.粘土矿物含有羟基和金属氧键,可与GO发生相互作用.根据粘土矿物最大聚沉效率的不同,聚沉能力为:纳米氧化铝>高岭土>膨润土>蒙脱土,主要影响因素为粘土矿物在水中的电性.本文有助于了解GO在不同水环境中的聚沉行为,对未来石墨烯工程应用于污染治理具有重要意义.  相似文献   
5.
近年来, 放射性污染物铀(U(VI))在水环境中的排放对生态环境和生物健康造成严重的威胁. 本研究采用液相还原法制备了硫化纳米零价铁(S-NZVI)材料, 并将其用于水中U(VI)的去除. 首先, 我们采取了一系列的微观表征技术探究了S-NZVI的表面特征及材料特性. 结果表明, 相比于纳米零价铁(NZVI), S-NZVI颗粒不易团聚, 性质更加稳定. 随后, 通过宏观实验探究了反应时间、温度、pH、背景离子浓度等因素对S-NZVI去除U(VI)的影响. 结果表明, S-NZVI对U(VI)的最大去除量高达562.5 mg•g-1, 且在100 min内达到反应平衡. 宏观实验和X射线光电子能谱(XPS)分析表明S-NZVI对U(VI)的去除机理是吸附和氧化还原协同作用的结果. 此外, S-NZVI可以通过外加磁场从水中快速地进行分离, 便于材料再回收与利用. 综上, 本研究构筑了一种制备简单、便于回收且高效的U(VI)净化材料, 未来可能会在放射性核素的处理处置等相关工作中起到重要作用.  相似文献   
6.
层状双金属氧化物材料(LDHs)作为最常见的二维材料,在环境污染治理领域展现出巨大的优势. LDHs具有来源广泛、易于制备、较大的表面积、可调控的化学结构、环境友好等优点,最近几年其改性材料多用于放射性核素的高效去除.本文介绍了常用的LDHs材料及其衍生物的制备方法以及它们在放射性核素处理方面的应用及其相互作用机制,最后对LDHs材料的应用和挑战给出了个人见解.本综述为高效去除放射性核素的LDHs材料的设计指明了方向,为放射性核素的高效处理处置提供了新材料.  相似文献   
7.
水污染是世界性问题,严重影响了人类的身体健康和环境的可持续性。迫切需要一种高效环保的吸附剂材料用于水体污染治理。石墨相氮化碳(g-C3N4)材料具有与石墨类似的层状结构,具有许多优异性质,如大的表面积、高的热稳定性和化学惰性,成为新兴的吸附剂材料。本文主要介绍了g-C3N4基材料在重金属、放射性核素以及有机污染物去除方面的应用。通过批实验、光谱分析、表面配位模型和理论计算等技术系统分析了g-C3N4基材料与污染物之间的作用机理。g-C3N4基材料与污染物之间的相互作用主要归因于表面配位、π-π作用、离子交换作用和静电作用。本文有助于读者进一步了解g-C3N4基材料与污染物之间的作用机理,并且发掘更多的g-C3N4改性材料,将其应用于环境修复领域当中。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号