首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  国内免费   2篇
化学   3篇
物理学   1篇
  2023年   1篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
排序方式: 共有4条查询结果,搜索用时 46 毫秒
1
1.
经分子杂交技术合成了一系列4-取代-1-(2-甲基-6-(吡啶-3-基)-烟酰)氨基脲类衍生物.采用噻唑蓝(MTT)比色法研究了目标化合物对人肝癌细胞(QGY-7703)、人肺癌细胞(NCl-H460)和乳腺癌细胞(MCF-7)的体外抗肿瘤活性.1-(2-甲基-6-(吡啶-3-基)烟酰基)-4-(2,4,6-三氯苯基)氨基脲(4n)显示了最优的活性,其半数抑制浓度(IC_(50))为8.89~11.45μmol/L.细胞体内的生物研究显示,4n药物处理能明显增加细胞体内PARP切割水平以及诱导QGY-7703肿瘤细胞的凋亡.  相似文献   
2.
光催化固氮是最具潜力的人工光合过程之一,也是有望取代工业Haber-Bosch方法实现氨的绿色合成的清洁能源技术之一.由于氮气分子还原为氨需要较高的还原电位,导致大部分常规的半导体材料的导带能级不能满足固氮反应的热力学要求.同时,固氮光催化剂普遍存在光响应波段窄、表面催化活性低、太阳光向氨的转化效率低等问题.缺陷工程是目前制备高效固氮光催化剂的最有效的途径之一.在催化剂中引入缺陷可以带来两个方面的好处:(1)促进氮气分子在缺陷位点上的化学吸附和活化,从而降低反应能垒;(2)拓宽催化剂的太阳光响应波段,提高对太阳光的利用效率.等离激元效应来自于自由载流子的集体振荡,广泛存在于金属纳米结构中.尽管金属等离激元纳米材料在光催化中也有广泛的应用,可以通过等离激元增强的光吸收和散射、热载流子传输以及等离激元共振能量传递等机理提高太阳能转化效率,但其能量转化效率仍有限,多用于弥补半导体材料的弱点.研究发现,一些半导体纳米材料在可见光和近红外光范围表现出优异的等离激元共振吸收.相比等离激元金属纳米材料,这些半导体的等离激元共振效应的调控手段更加丰富.等离激元半导体材料普遍具有较高的缺陷浓度、非常宽的光响应波段,因而是理想的固氮光催化剂.本文利用具有还原性的气氛处理溶剂热法制备的SrMoO4,通过引入高浓度的氧空位,实现了可调控的稳定的等离激元共振吸收.制备的SrMoO4在可见光和近红外光范围具有强的等离激元吸收,其共振吸收峰的中心位置可从520调到815 nm,显著拓宽了SrMoO4的光响应波段,而样品的本征吸收边仍然位于310 nm.研究发现,氢气还原没有改变Sr的氧化态,而是将Mo6+还原成Mo5+.紫外光电子能谱分析结果表明,高温氢气处理没有改变SrMoO4样品的导带和价带能级.电子顺磁共振研究结果表明,氢气处理在SrMoO4中形成了大量的氧空位.Mott-Schottky测试结果发现,氢气处理后的样品的载流子浓度高达~2.0×1020 cm-3.具有等离激元效应的SrMoO4表现出优异的可见光固氮性能,相比不具有等离激元效应的SrMoO4,在入射光波长大于420 nm的可见光照射下,在氢气气氛中处理10 min,3,6和8h的SrMoO4样品的氨的产率分别为41.2,36.3,24.5和20.8 μg gcat-1 h-1.其增强光催化活性主要来源于更宽的太阳光吸收波段、等离激元激发产生的热载流子和丰富的缺陷活性位点.一方面,SrMoO4具有较高的导带能级,本征激发形成的导带电子能在热力学上将氮气分子还原为氨;另一方面,等离激元激发产生的热载流子具有较高的能量,能够越过固液界面的肖特基能垒,将吸附在催化剂表面缺陷处的氮气分子还原为氨.但是,尽管缺陷在光催化固氮中展现出多方面的优点,其在半导体中的浓度仍需进一步的优化.  相似文献   
3.
用SnCl_2催化二苯酮肟贝克曼重排反应,研究了催化剂结晶水、反应时间、反应温度及反应溶剂等因素对重排反应影响。结果表明二苯酮肟浓度为0.659mmol·m L~(-1),酮肟与无水Sn Cl2物质的量之比50∶1,在无水乙腈中回流反应2 h,为最优反应条件,转化率可达93.58%。  相似文献   
4.
<正>Kenneth Brecher利用数学常数设计了旋转陀螺,其中运用了费恩海姆常数(Feigenbaum constant),它能产生一个具有优先旋转方向的陀螺。旋转陀螺是一个经典的儿童玩具,它的旋转和摆动可以娱乐几个小时。但对Kenneth Brecher来说,陀螺不仅仅是玩具:它是一种用实际行动展示物理和数学的方式。在过去的六年里,这位退休的波士顿大学天体物理学家一直在优化旋转陀螺的设计,使其旋转的时间更长,他的方法是将数学常数纳入陀螺的维度中。在最近的2021年布里奇斯会议(Bridges conference)上,Brecher展示了他的最新的研究——一种名为回旋陀螺的单向旋转装置,  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号