首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
  国内免费   5篇
化学   6篇
  2022年   1篇
  2020年   1篇
  2018年   1篇
  2014年   2篇
  2013年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
嵌段共聚物由于各嵌段性质不同,在选择性溶剂中能够自发地组装形成众多形态结构各异的纳米结构,如纳米级的球状、棒状、环状、片层状、囊泡及复合胶束等。这些胶束结构在药物传输、催化、电子信息等众多领域都有潜在的应用价值。通过计算机模拟可以在线监控嵌段共聚物的组装过程、揭示其组装机理,明确各种因素对组装结构的影响规律,为实验研究提供思路和理论支持,因此越来越受到人们的广泛关注。本文主要综述了通过计算机模拟对嵌段共聚物在选择性溶剂中自组装研究的一些最新进展,详细讨论了影响嵌段共聚物自组装过程和胶束形貌的各种因素,并对这个领域未来的发展进行了展望。  相似文献   
2.
碳纤维树脂复合材料回收再利用是碳纤维产业可持续发展的重要一环,因此受到学术界及产业界的广泛关注。 超临界流体回收碳纤维方法是一种高效、清洁,并且对碳纤维性能损伤较小的回收方法。 本文回顾了超临界流体回收碳纤维树脂复合材料研究进展,系统讨论超临界体系、反应条件、催化剂等对树脂降解率、回收碳纤维性能的影响,并对超临界流体回收碳纤维树脂复合材料的未来发展进行了展望。  相似文献   
3.
扫描电子显微镜(scanning electron microscope,SEM)是表征高分子材料微观结构及其组成信息重要的手段之一,具有操作简便、信号电子种类多样且对样品损伤较小等特点.本文系统阐述了SEM的工作原理,通过与透射电子显微镜(transmission electron microscope,TEM)进行比较,突出了其优势与特色.详细讨论了该技术的测试方法,包括样品制备、仪器参数设定、操作技巧与图像处理,并揭示了获得高质量SEM图像的关键技术.介绍了SEM不同的信号电子成像、SEM与其他仪器联用及SEM原位分析技术在高分子材料表征中的应用与进展.最后,对SEM的发展趋势进行了展望.  相似文献   
4.
采用差速离心法制备鲫鱼肝微粒体,选择已经建立的肝微粒体系统进行体外孵育,研究有机磷杀虫剂辛硫磷在鲫鱼肝微粒体中的代谢。产物经乙酸乙酯萃取2次,取出有机相于40℃下旋转蒸发至近干,加1 mL甲醇,经高效液相色谱(HPLC)分离测定,液相色谱-电喷雾质谱联用(LC-ESI/MS)鉴定其分子结构,发现了3种代谢产物(M1:二乙基硫代磷酸;M2:四乙基二硫代焦磷酸;M3:辛氧磷),据此推断辛硫磷在鲫鱼肝微粒体(细胞色素P450酶系)的作用下进行了脱硫氧化、水解反应。从而可推断辛硫磷在鲫鱼肝微粒体中的代谢途径和代谢特点,为进一步研究其体内代谢和代谢酶奠定基础。  相似文献   
5.
付超  朱雨田  施德安 《化学进展》2014,26(1):140-151
嵌段共聚物是由两种或两种以上不同性质的聚合物链段通过共价键连接形成的特殊聚合物。它可以结合构成嵌段的不同种类聚合物的性质,得到性能比较优越的功能性聚合物材料,因此越来越受到人们的重视。然而,嵌段共聚物的分离和表征一直都是一项颇具挑战性的工作。临界条件液相色谱(liquid chromatography at the critical condition,LCCC)作为一种新型的液相色谱分离技术,可以使嵌段共聚物中的某种嵌段处于“色谱不可见”(chromatographic invisible)状态,不会影响整个聚合物的保留时间,从而根据嵌段共聚物中其他嵌段长度来分离嵌段共聚物。本文介绍了LCCC分离法的分离原理与实现途径,较为系统地综述了LCCC分离表征嵌段共聚物的近期研究进展,并对该方法目前存在的问题及今后发展前景进行了探讨。  相似文献   
6.
嵌段共聚物在三维软受限条件下能够组装形成结构有序的聚合物胶束,其在催化、电子器件、光学传感等领域有广泛的应用价值,已经引起了广大科研工作者的关注。众所周知,嵌段共聚物自身性质及组装体内部结构和外部形状都会显著影响嵌段共聚物组装体性质及应用。本文简述了近年来嵌段共聚物三维软受限自组装的方法,分析了影响嵌段共聚物组装结构的内在和外在因素,内在因素主要指嵌段共聚物自身性质,包括嵌段共聚物种类、分子量及嵌段比;外在因素主要包括受限空间尺寸、界面性质、热或溶剂退火等。本文讨论了无机纳米粒子与嵌段共聚物三维软受限共组装,探讨了纳米粒子引入对组装结构影响及其在嵌段共聚物组装体中的分布及排列规律,以及组装结构的潜在应用。最后还讨论了目前嵌段共聚物三维软受限自组装存在的问题,同时对未来的发展方向进行了展望。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号