首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  国内免费   6篇
化学   9篇
  2023年   2篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2018年   1篇
  2016年   1篇
  2012年   1篇
排序方式: 共有9条查询结果,搜索用时 31 毫秒
1
1.
燃料电池中贵金属铂的大量使用是阻碍其发展的关键因素,亟需探索高效廉价的替代型电催化剂.在目前的替代型非贵金属催化剂研究中,氮杂炭材料是一类氧还原反应催化活性最好、成本最低廉的催化剂,被认为是最有可能取代Pt催化剂而获得实际应用的催化剂.氮杂有序介孔炭材料因具有极高的比表面积和规整的孔道结构,可实现活性位点的密集组装与反应物料的快速传输,受到研究者的广泛关注.本文分别以苯胺、吡咯和邻菲罗啉为含氮前驱体,介孔分子筛SBA-15为硬模板,采用纳米浇铸法成功制备了具有高比表面积的氮杂有序介孔炭材料,系统研究了不同含氮前驱体对氮杂有序介孔炭材料的影响.采用氮气吸附-脱附等温线、透射电子显微镜(TEM)、X射线衍射(XRD)和X射线光电子能谱(XPS)等方法研究了氮杂有序介孔炭的组成与结构,采用循环伏安法(CV)以及线性扫描伏安法(LSV)等手段考察了其电化学行为与氧还原反应极化性能.氮气吸附-脱附等温线结果表明,采用三种不同含氮前驱体制备的氮杂炭材料都对应Ⅳ型吸脱附等温线以及H4型滞后环,表明所制备的氮杂炭材料具有介孔结构.由TEM可以清楚地观察到氮杂炭材料已经成功地反转了SBA-15模板的孔道结构.同时发现,含氮前驱体对氮杂炭材料的比表面积和孔结构产生较大影响:以吡咯和邻菲罗啉为前驱体制备的炭材料C-PY-900和C-Phen-900的比表面积较高,分别为765和746 m2/g,而以苯胺为前驱体制备的炭材料C-PA-900比表面积较小(569 m2/g);三种炭材料平均孔径大小顺序为C-Phen-900 (3.7 nm)< C-PY-900 (5.0 nm)< C-PA-900 (5.9 nm),这是由于不同含氮前驱体在高温焙烧过程中热分解行为不同所致.XRD结果发现,含氮前驱体对氮杂炭材料的晶型基本没有影响,均为无定形碳.XPS结果表明,采用苯胺、吡咯以及林菲啰啉为前驱体制备的氮杂炭材料中氮含量基本相同,分别为3.13 at%,3.32 at%和3.33 at%,说明在相同热解条件下材料中的氮含量基本不受前驱体的影响,但不同配位环境的氮含量以及氮活化碳原子的含量却有较大差异,其氮活化碳原子的相对含量分别为15.60%,19.87%和23.04%.电化学测试结果表明,三种氮杂介孔炭材料的氧还原反应电催化活性顺序为C-PA-900<C-PY-900<C-Phen-900,其H2O2产率低于30%,说明氧还原反应经历4电子转移路径.在碱性条件下,所制氮杂有序介孔炭材料C-PY-900和C-Phen-900表现出较商品Pt/C催化剂更加优异的氧还原反应电催化性能.综上可见,通过改变含氮前驱体的类型可以有效调变氮杂炭材料的比表面积、孔道结构以及N 1s与C 1s化学态,从而调控氧还原反应活性,本文不仅制备出高活性的非贵金属氧还原电催化剂,同时也为高活性炭基电催化剂的可控制备提供了思路.  相似文献   
2.
三元镍钴锰正极材料是一类非常重要的正极材料,具有性能优于钴酸锂而成本远远低于钴酸锂、能量密度远远高于磷酸铁锂等重要优点,正在逐渐成为汽车动力电池的主流正极材料。但是,三元镍钴锰正极材料也存在循环稳定性不足、大电流密度放电性能不佳等问题。围绕解决这些问题并进一步提升三元镍钴锰正极材料的性能,近年来国内外在材料制备技术以及改性技术方面开展了大量的研究工作,取得了若干令人瞩目的研究成果。本文从材料制备方法、包覆修饰和掺杂改性三个方面,介绍了三元镍钴锰正极材料制备技术及改性技术的研究进展,在此基础上,对三元镍钴锰正极材料的未来发展方向作出展望。  相似文献   
3.
“蛋黄蛋壳”结构纳米材料,具有易于调控的“蛋黄”、“蛋壳”和“空腔”结构,可视作“纳米反应器”,在催化、储能等领域表现出显著的应用潜力。尤其在电化学能源存储和转换方面,该结构纳米电极具有大的比表面积和独特的核壳结构,在充放电过程中可缓解电极的体积变化,提供快速的离子/电子输运通道,强化中间产物的吸附和提升转换反应效率等,能显著提高电极稳定性、倍率性能和循环性能,是一类较为理想的电极材料。本文针对“蛋黄蛋壳”结构纳米电极在锂/钠离子电池、锂硫电池等新兴二次电池领域的实际应用,总结了具有该结构纳米电极的设计与合成策略,包括:模板法、奥斯特瓦尔德熟化、电化学置换、克肯达尔效应等,评述了各种策略的优缺点以及电极材料的应用进展,最后对该类材料在锂/钠体系及锂硫电池二次电池方面的研究与应用前景进行了展望。  相似文献   
4.
分别使用3种有机物辅助模板剂,由喷雾干燥制得LiFePO4/C复合正极材料,X射线衍射(XRD)、扫描电镜(SEM)表征、考察了不同模板剂对样品的形貌和性能的影响.交流阻抗(EIS)、循环伏安(CV)和恒电流充放电测试电极性能.结果表明:样品的形貌和结构因添加不同的有机模板剂而改变.无模板剂时,得到的样品是光滑实心球;...  相似文献   
5.
化工原理是化工及其相关专业的一门专业基础课,存在内容多、计算量大、课堂互动难等情况。在教学中引入雨课堂智慧教学工具,有助于解决教学中存在的普遍问题。从课前教学设计、课中互动和测验、课后复习和信息反馈、课程评价机制等方面介绍了雨课堂智慧教学工具在化工原理教学中的应用,实现以学生为中心、科学地评价学生的学习过程与学习效果。基于雨课堂的智慧教学模式对教学的促进作用显著,出勤率明显提升,课堂气氛活跃,信息反馈及时,有助于教师掌握每位学生的学习情况,能使教学更具个性化。  相似文献   
6.
固态金属锂电池因其优异的安全性和高的理论能量密度被认为是最具前景的下一代储能电池体系之一。随着以硫化物为代表的高离子导率电解质被逐渐开发,金属锂与固态电解质界面成为限制固态电池应用的主要瓶颈。金属锂/电解质的固固界面存在着界面接触差、界面电荷传输阻力高等问题。本文以固态金属锂软包电池为研究对象,通过由1,1,2,2-四氟乙基-2,2,3,3-四氟丙基醚、乙二醇二甲醚与双三氟磺酰亚胺锂组成的局部高盐液态电解液(HFE-DME LiTFSI)对金属锂/固态电解质界面进行润湿,增加金属锂与固态电解质之间的离子接触,降低离子传输阻力,从而提高锂离子在界面的传输能力。在30 mm×30 mm Li|Li4Ti5O12(LTO)固态软包电池中,通过3.0μL·cm?2 HFE-DME LiTFSI局部高盐液态电解液润湿金属锂与固态电解质界面,软包电池的界面电阻从4366Ω·cm?2降低到了64Ω·cm?2。在0.1C与0.5C倍率下,LTO的放电比容量分别达到107与96 mAh·g?1。同时,Li-S固态软包电池在0.01C及0.02C下,比容量也达到了1100与932 mAh·g?1。  相似文献   
7.
锂硫电池具有理论能量密度高等优势,被认为是最有前景的一类新型二次电池.硫正极存在硫和硫化锂的导电性差、可溶性多硫化物的扩散/穿梭、循环过程中硫的体积膨胀以及氧化还原过程慢等问题,严重制约着电池的活性和循环稳定性.设计“蛋黄-蛋壳”结构纳米反应器应用于锂硫电池正极,可通过调控其“蛋黄”、“蛋壳”和“空腔”结构缓解充放电过程中电极的体积变化,为离子/电子输运提供快速通道,强化对多硫化物的吸附和催化转换作用等,进而提高电极的活性和循环性能,有利于推进锂硫电池的商业化进程.本文总结了“蛋黄-蛋壳”结构纳米反应器的设计和调控策略,包括单核-单壳、单核-多壳、多核-单壳以及多核-多壳等,并结合锂硫电池的工作特点和目前应用存在的问题,对未来发展前景进行了展望.  相似文献   
8.
锂硫电池具有理论能量密度高、成本低廉和环境友好等优点,是最有前途的下一代高比能二次电池系统之一。当前,基于有机电解液的液态锂硫电池存在多硫化锂穿梭效应、电解液易燃以及锂枝晶等问题,致使电池的库仑效率低、循环性能差,且存在严重的安全隐患。采用固态电解质(如凝胶聚合物、固态聚合物、陶瓷、复合电解质等)替代有机电解液是解决上述问题的有效途径。本文总结了近年来固态锂硫电池电解质的研究现状,评述了各类固态电解质的优缺点及改性策略,重点介绍了陶瓷固态电解质的研究进展。最后,对固态锂硫电池的未来发展趋势进行预测与展望。  相似文献   
9.
随着大数据和人工智能的发展以及机器学习(ML)与化学学科领域的交叉,ML技术与电池领域的结合激发了更有前途的电池开发方法,尤其在电池材料设计、性能预测、结构优化等方面的应用愈加广泛。应用ML可以有效地加速电池材料的筛选进程并预测锂电池(LBs)的性能,从而推动LBs的发展。本文简要介绍了ML的基本思想及其在LBs领域中几种重要的ML算法,之后讨论了传统模拟计算方法与ML方法各自的误差表现及分析,借此来提高LBs专家对ML方法的理解。其次,重点介绍了ML在电池材料实际开发中的应用,包括正极材料、电解质、材料多尺度模拟及高通量实验(HTE)等方面,借此介绍ML方法在电池领域应用的思想和手段。最后,总结了ML方法在锂电池领域中的研究现状并展望了其应用前景。本综述旨在阐明ML在LBs开发中的应用,并为先进LBs的研究提供借鉴。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号