首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   78篇
  免费   4篇
化学   55篇
晶体学   2篇
数学   7篇
物理学   18篇
  2023年   1篇
  2022年   2篇
  2021年   1篇
  2020年   4篇
  2019年   4篇
  2018年   2篇
  2017年   2篇
  2016年   4篇
  2015年   5篇
  2014年   4篇
  2013年   9篇
  2012年   10篇
  2011年   5篇
  2010年   1篇
  2009年   3篇
  2008年   3篇
  2007年   3篇
  2006年   2篇
  2004年   3篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  1995年   3篇
  1992年   4篇
  1991年   1篇
  1987年   1篇
  1974年   1篇
排序方式: 共有82条查询结果,搜索用时 31 毫秒
1.
The direct chemical ionization mass spectra with isobutane of 14 silylated iridoid glucosides of different structural types were studied. The dependence of the intensity of different peaks on the structure and stereochemistry of the investigated compounds is discussed.  相似文献   
2.
The promiscuous aldo–ketoreductase (AKR) enzyme is used as a sustainable biocatalyst for the first time to catalyze asymmetric aldol reactions in aqueous medium. The reactions between aromatic aldehydes and cyclic/acyclic ketones give the corresponding products in moderate yields and enantioselectivities in the presence of water. The influence of solvents, the mole ratio of substrates, and enzyme concentration are investigated. The mechanism of the AKR1A1-catalyzed aldol reaction is also discussed.  相似文献   
3.
BackgroundThe recent pandemic by COVID-19 is a global threat to human health. The disease is caused by SARS-CoV-2 and the infection rate is increased more quickly than MERS and SARS as their rapid adaptation to varied climatic conditions through rapid mutations. It becomes more severe due to the lack of proper therapeutic drugs, insufficient diagnostic tool, scarcity of appropriate drug, life supporting medical facility and mostly lack of awareness. Therefore, preventive measure is one of the important strategies to control. In this context, herbal medicinal plants received a noticeable attention to treat COVID-19 in Indian subcontinent. Here, 44 Indian traditional plants have been discussed with their novel phytochemicals that prevent the novel corona virus. The basic of SARS-CoV-2, their common way of transmission including their effect on immune and nervous system have been discussed. We have analysed their mechanism of action against COVID-19 following in-silico analysis. Their probable mechanism and therapeutic approaches behind the activity of phytochemicals to stimulate immune response as well as inhibition of viral multiplication discussed rationally. Thus, mixtures of active secondary metabolites/phytochemicals are the only choice to prevent the disease in countries where vaccination will take long time due to overcrowded population density.  相似文献   
4.
An effective electrochemical sensor was constructed using an unmodified boron-doped diamond electrode for determination of genistein by square-wave voltammetry. Cyclic voltammetric investigations of genistein with HClO4 solution indicated that irreversible behavior, adsorption-controlled and well-defined two oxidation peaks at about +0.92 (PA1) & +1.27 V (PA2). pH, as well as supporting electrolytes, are important in genistein oxidations. Quantification analyses of genistein were conducted using its two oxidation peaks. Using optimized experiments as well as instrumental conditions, the current response with genistein was proportionately linear in the concentrations range of 0.1 to 50.0 μg mL−1 (3.7×10−7−1.9×10−4 mol L−1), by the detection limit of 0.023 μg mL−1 (8.5×10−8 mol L−1) for PA1 and 0.028 μg mL−1 (1.1×10−7 mol L−1) for PA2 in 0.1 mol L−1 HClO4 solution (in the open circuit condition at 30 s accumulation time). Ultimately, the developed method was effectively applied to detect genistein in model human urine samples by using its second oxidation peak (PA2).  相似文献   
5.
The ionic exchange behavior of Zn2+, Ni2+, and Cu2+ metallic ions on Amberlyst-15 commercial resin was studied as a function of resin solution contact time, initial concentration of metallic ions, nature of the solvent, and the amount of resin. The metallic ions were studied in ternary mixtures using both column and batch experiments. In addition, water, methanol, ethanol, and propan-2-ol were used as solvents for dissolving metallic ions. It was found that the resin behavior depends on the solvent nature and the metallic ion concentration. The analysis of solutions by atomic absorption spectrometry revealed that the affinity of the resin for the studied metallic ions followed the sequence Cu2+ > Ni2+ > Zn2+ in the case of an aqueous medium. Furthermore, uptake increased with increasing amount of resin. A better uptake was observed in the case of the 75:25 % water/methanol compositions when the column technique was used. For the batch technique, we noted a better uptake using 100 % water. The uptake rate decreased with an increase in the number of carbons for the 50 % water–50 % alcohol solvents. The acid–base properties of Amberlyst-15 commercial resin were studied by 2-propanol decomposition test. Propene and acetone are the main expected products and it is believed that they are formed through dehydration or dehydrogenation reaction on acid and base sites, respectively.  相似文献   
6.
7.
Transmission and reflection measurements over the frequency range 17–200 cm?1 were made on GaAs with electron concentrations of 1·0 and 4·9 × 1016 cm?3. The plasma frequencies of the samples fall within the measurement range. When values of the free carrier absorption coefficient α and the real refractive index n as derived from the data are plotted in the form (αn)?1 vs (frequency)2, the plots are linear, in excellent agreement with Drude theory. Deduced values of effective mass, relaxation time and mobility agree with published values and with a d.c. drift measurement.  相似文献   
8.
Supported copper catalysts on low surface area silica were prepared by several methods and characterized by AAS, XRD, N2 adsorption, SEM, H2-TPR, N2O titration, TGA-DTA, UV–Vis techniques. Their hydrogenating properties were examined in the gas-phase hydrogenation of benzaldehyde. The analysis of characterization results revealed that the choice of preparation method affected the texture, composition, and structure of the calcined and reduced Cu/SiO2 catalysts. The dispersion and size distribution of copper species was present in different forms in the catalysts that exhibited low specific surface areas. In gas-phase hydrogenation of benzaldehyde to benzyl alcohol, the catalysts tested at the reaction temperatures of 160 and 200 °C were stable and conducted to a good catalytic activity and benzyl alcohol selectivity ranging between 5 and 39 µmol min?1 g?1 and 0–95%, respectively. The activity of the catalysts in gas-phase hydrogenation also depended on the particle size and the nature of copper species formed on low surface area silica.  相似文献   
9.
The structure and surface composition of a Ni3Sn alloy at conditions relevant for the steam reforming reaction was investigated using density functional theory calculations. Both the flat Ni3Sn(0 0 0 1) surface and a surface with steps in the closed packed direction [1 0  0]were considered. The adsorption geometries and energies of the species CO, C, OH and H were calculated. Chemical potentials were used to map out which adsorbates are on the surface under varying conditions. It was found that adsorbates preferably bind to Ni as nearest neighbor with Sn as second-nearest neighbor. The binding energy is slightly stronger than on pure Ni. Adsorbate binding to Sn was found to be very unfavorable. Binding free energies indicate that at high temperature the alloy surface will be predominantly covered by CO and C, and at low temperatures one may find H and almost no OH. Even though the nominal composition of the investigated alloy is Ni3Sn, the surface composition may differ significantly depending on temperature and pressure of the gas phase. This effect was investigated by calculating segregation energies both in the absence and in the presence of adsorbates. For the flat surface, it was found that only the bulk termination is present under relevant conditions. In contrast, it was found that for steps preferential adsorption of CO and C on Ni sites may lead to adsorption-induced segregation at temperatures below 400 °C. When taking segregation into account, the most stable Ni3Sn surfaces will not bind CO or C at the same condition that Ni does. This is in excellent agreement with the previously proven ability of Ni-Sn alloys to inhibit graphite formation.  相似文献   
10.
The dielectric behavior of polymethyl methacrylate/multi-walled carbon nanocomposites (PMMA/MWCNTs) was investigated using impedance spectroscopy technique. The composites were prepared using melt mixing with MWCNTs loading ranging from 0.01 to 10 wt%. The experimental results showed that the measured impedance reflects the insulating behavior of the host material (PMMA) with no appreciable effects of the filler less than 8.5 wt%. However, for the sample containing 10 wt%, the calculated value of dc conductivity increases with increasing temperature from 2.0×10−6 (Ω m)−1 to attain a value of 4.8×10−6 (Ω m)−1 at 110 °C. The percolation threshold derived from the dielectric data was estimated to be higher than 8.5 wt% and lower than 10 wt%. A temperature dependent electrical relaxation phenomenon was only observed in the sample containing 10 wt% of MWCNTs. The frequency dependence of the ac conductivity data followed a power law.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号