首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Electroanalysis》2017,29(7):1691-1699
The simultaneous voltammetric determination of melatonin (MT) and pyridoxine (PY) has been carried out at a cathodically pretreated boron‐doped diamond electrode. By using cyclic voltammetry, a separation of the oxidation peak potentials of both compounds present in mixture was about 0.47 V in Britton‐Robinson buffer, pH 2. The results obtained by square‐wave voltammetry allowed a method to be developed for determination of MT and PY simultaneously in the ranges 1–100 μg mL−1 (4.3×10−6–4.3×10−4 mol L−1) and 10–175 μg mL−1 (4.9×10−5–8.5×10−4 mol L−1), with detection limits of 0.14 μg mL−1 (6.0×10−7 mol L−1) and 1.35 μg mL−1 (6.6×10−6 mol L−1), respectively. The proposed method was successfully to the dietary supplements samples containing these compounds for health‐caring purposes.  相似文献   

2.
The present work describes the individual, selective and simultaneous quantification of acetaminophen (ACP) and tramadol hydrochloride (TRA) using a modification‐free boron‐doped diamond (BDD) electrode. Cyclic voltammetric measurements revealed that the profile of the binary mixtures of ACP and TRA were manifested by two irreversible oxidation peaks at about +1.04 V (for ACP) and +1.61 V (for TRA) in Britton‐Robinson (BR) buffer pH 3.0. TRA oxidation peak was significantly improved in the presence of anionic surfactant, sodium dodecyl sulfate (SDS), while ACP signal did not change. By employing square‐wave stripping mode in BR buffer pH 3.0 containing 8×10?4 mol L?1 SDS after 30 s accumulation under open‐circuit voltage, the BDD electrode could be used for quantification of ACP and TRA simultaneously in the ranges 1.0–70 μg mL?1 (6.6×10?6–4.6×10?4 mol L?1) and 1.0–70 μg mL?1 (3.3×10?6–2.3×10?4 mol L?1), with detection limits of 0.11 μg mL?1 (7.3×10?7 mol L?1) and 0.13 μg mL?1 (4.3×10?7 mol L?1), respectively. The practical applicability of the proposed approach was tested for the individual and simultaneous quantification of ACP and/or TRA in the pharmaceutical dosage forms.  相似文献   

3.
The present work describes the first electrochemical investigation and a simple, rapid and modification‐free electroanalytical methodology for quantification of hordenine (a potent phenylethylamine alkaloid) using a boron‐doped diamond electrode. At optimized square‐wave voltammetric parameters, the observed oxidation peak current in 0.1 M HClO4 at +1.33 V (vs. Ag/AgCl) increased linearly from 5.0 to 100 μg mL?1 (3.0×10?5–6.1×10?4 M), with detection limit of 1.3 μg mL?1 (7.8×10?6 M). The applicability of the developed method was tested with the determination of hordenine in the commercial dietary supplement formulations.  相似文献   

4.
Simple and rapid voltammetric method for simultaneous determination of all-trans-retinyl acetate (RAc) or all-trans-retinyl palmitate (RPa) and α-tocopheryl acetate (α-TOAc) has been proposed. The respective method was based on the anodic oxidation of the compounds of interest by square-wave voltammetry in acetone with 0.1 mol L−1 LiClO4 at the glassy carbon electrode. The procedure was also beneficial with respect to simple dissolution of sample directly in the supporting electrolyte. The all-trans-retinyl acetate could be quantified in two linear ranges (3.1–140 μmol L−1 and 140–400 μmol L−1) and α-tocopheryl acetate in linear range 5.3–400 μmol L−1 with detection limits of 0.9 μmol L−1 RAc (or 0.8 μmol L−1 RPa) and of 1.6 μmol L−1 α-TOAc. Selected commercial cosmetic products were analysed achieving satisfactory recoveries.  相似文献   

5.
A new and simple photoelectrochemical (PEC) sensor using a glassy carbon electrode (GCE) modified with bismuth vanadate (BiVO4) nanoparticles and dihexadecyl phosphate (DHP) film was useful for acetaminophen (AC) determination. In 0.2 mol L−1 phosphate buffer (pH=9), the GCE without modification exhibited the smaller photocurrent (0.86 μA) when compared with GCE modified with 1.0 mg mL−1 or 2.0 mg mL−1 BiVO4 nanoparticles suspension (5.9 and 34 μA, respectively). Based on the photocurrent signal generated through the interaction between GCE, BiVO4 and the energy of visible light a chronoamperometric method for AC determination was developed. The AC linear range concentration from 0.099 to 0.99 μmol L−1 and limits of detection and quantification of 0.027 and 0.091 μmol L−1, respectively, was obtained. The proposed method was applied to the AC determination in commercial drugs and tap water with satisfactory accuracy and precision. Moreover, the PEC construction was easy and had a short response time, which might confer higher sample throughput for the method.  相似文献   

6.
A new electroactive label has been used to monitor immunoassays in the determination of human serum albumin (HSA) using glassy-carbon electrodes as supports for the immunological reactions. The label was a gold(I) complex, sodium aurothiomalate, which was bound to rabbit IgG anti-human serum albumin (anti-HSA-Au). The HSA was adsorbed on the electrode surface and the immunological reaction with gold-labelled anti-HSA was then performed for one hour by non-competitive or competitive procedures. The gold(I) bound to the anti-HSA was electrodeposited in 0.1 mol L−1 HCl at −1.00 V for 5 min then oxidised in 0.1 mol L−1 H2SO4 solution at +1.40 V for 1 min. Silver electrodeposition at −0.14 V for 1 min followed by anodic stripping voltammetry were then performed in aqueous 1.0 mol L−1 NH3–2.0×10−4 mol L−1 AgNO3. For both non-competitive and competitive formats, calibration plots in the ranges 5.0×10−10 to 1.0×10−8 mol L−1 and 1.0×10−10 to 1.0×10−9 mol L−1 HSA, respectively, with estimated detection limits of 1.5×10−10 mol L−1 (10 ng mL−1) and 1.0×10−10 mol L−1 (7 ng mL−1), respectively, were obtained. Levels of HSA in two healthy volunteer urine samples were also evaluated, using both immunoassay formats.  相似文献   

7.
The electrochemical behavior of the antitumor herbal drug apigenin was studied in 0.1 mol L?1 B‐R buffer solutions (50% ethanol, pH 3.0) by cyclic voltammetry (CV) at a glassy carbon electrode. In CV, two oxidation peaks (P1 and P2) with Ep1 = 1.03V and Ep2 = 1.23 V appeared at a scan rate of 0.05 V s?1, and a new electroanalytical method for this herbal drug was established according to the oxidation peak P2. The peak currents have a linear relationship with apigenin concentration in a range from 9.0 × 10?7 to 2.0 × 10?5 mol L?1. Using the established method, apigenin in a herbal drug was determined without pre‐separation with satisfactory results. Moreover, the electrode dynamics parameters were also investigated by electrochemical techniques and the possible electrode reaction mechanism was deduced.  相似文献   

8.
This study is aimed to develop an electroanalytical methodology using a boron‐doped diamond electrode (BDD) associated with experimental design in order to determine simultaneously and selectively carbendazin (CBZ) and fenamiphos (FNP) pesticides. In previous studies oxidation peaks were observed at 1.10 V (CBZ) and 1.20 V (FNP), respectively, with characteristics of irreversible processes controlled by diffusion of species (in pH 2.0 (CBZ) and pH 3.5 (FNP)) using a BR buffer 0.1 mol L?1 as support electrolyte. The differences between the potentials for both pesticides, (about 100 mV) indicate the possibility of selective determination of FNP and CBZ. However, employing an equimolar mixture of analytes, the peaks overlap to form a single oxidation peak. Thus, we used a 34 full factorial design with four parameters to be analyzed in three levels, in order to obtain the optimized parameters for the separation of the peaks. The best separation conditions were pH 5.0, square wave frequency of 300 s?1, pulse amplitude of 10 mV and scan increment of 2 mV. These parameters were used to obtain the calibration curves of CBZ and FNP. For CBZ the analytical curve was obtained in the concentration range of 4.95×10?6 to 6.90×10?5 mol L?1 with good sensitivity and linearity (0.175 A/mol L?1 and 0.999, respectively). The limits of detection (LOD) and quantification (LOQ) were 1.6×10?6 mol L?1 and 5.5×10?6 mol L?1, respectively. For FNP the linear concentration interval was 4.95×10?6 to 3.67×10?5 mol L?1, with a sensitivity of 0,207 A/mol L?1 and linearity of 0.996. The LOD and LOQ were 4.1×10?6 mol L?1 and 13.7×10?6 mol L?1, respectively. Using these experimental conditions it was possible to separate the oxidation peaks of CBZ (Ep=1.08 V) and FNP (Ep=1.23 V). The electroanlytical method was applied in lemon juice samples. The recovery values were 110.0 % and 92.5 % for CBZ and FNP, respectively. The results showed that the developed method is suitable for application in foodstuff samples.  相似文献   

9.
《Electroanalysis》2017,29(3):835-842
A novel electrochemically activated doped Ta2O5 particles modified carbon paste electrode (EA‐Ta2O5‐CPE) was prepared and applied for selective and sensitive determination of chrysin. X‐ray diffraction (XRD), scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) techniques and cyclic voltammetry (CV) were used to characterize the Ta2O5 particles and investigate the electrochemical response of the sensor. Compared with bare CPE, the doped Ta2O5 modified electrode got much more porous by electrochemical treatment and exhibited larger effective surface area, more reactive site and excellent electrochemical catalytic activity toward the oxidation of chrysin. Under optimum conditions by LSV, the oxidation peak currents responded to chrysin linearly over a concentration range from 5.0×10−8 to 7.0×10−6 mol L−1 with a detection limit of 2.0×10−8 mol L−1 (5.08 ng mL−1). The fabricated sensor showed anti‐interference ability against the biological common interferents (i.e. baicalein, baicalin) and provided to be reliable for the determination of chrysin in Chinese medicinal herb Oroxylum indicum and chrysin capsules samples with satisfactory results.  相似文献   

10.
Fang  Lina  Wang  Qiudi  Bi  Kaishun  Zhao  Xu 《Chromatographia》2016,79(23):1659-1663

A sensitive and simple HPLC method for simultaneous determination of PAC-1 (first procaspase-activating compound), phenol red, and permeability markers (carbamazepine and furosemide) in perfusion samples was developed and validated to assess intestinal absorption of PAC-1 using single-pass intestinal perfusion technique (SPIP) in rats. The chromatographic separation was carried out on a Kromasil C18 column (150 mm × 4.6 mm, 5 μm) with acetonitrile–methanol–30 mmol L−1 phosphate buffer (pH 3.0, 25:10:65, v/v/v) as mobile phase at a flow rate of 1.0 mL min−1, and the wavelength of the UV detector was set at 281 nm. The calibration curves were linear in the ranges of 2.40–48.0 μg mL−1 for PAC-1; 3.60–72.0 μg mL−1 for carbamazepine; 3.20–64.0 μg mL−1 for furosemide, and 4.80–96.0 μg mL−1 for phenol red (r > 0.999). Both the intra- and inter-day precisions (RSD%) of all analytes were less than 6.8 % at three concentration levels, while accuracy ranged from 95.4 to 104.5 %. Data obtained in all method validation studies indicated that the method was suitable for the intended purpose. The effective permeability values (P eff) considering water flux with the help of non-permeable marker phenol red was calculated to be 0.42 × 10−4, 0.62 × 10−4, 0.32 × 10−4 cm s−1 for PAC-1; 0.72 × 10−4, 0.77 × 10−4, 0.52 × 10−4 cm s−1 for carbamazepine; 0.20 × 10−4, 0.16 × 10−4, 0.12 × 10−4 cm s−1 for furosemide in duodenum, jejunum and ileum, respectively. The P eff value can be increased by co-perfusion with verapamil, indicating that absorption of PAC-1 is efficiently transported by P-glycoprotein (P-gp) in the gut wall.

  相似文献   

11.
The kinetic method for the determination of phosphate microamounts was described. The developed method is based on catalytic effect of phosphate on sodium pyrogallol-5-sulphonate (PS) by dissolved oxygen. The reaction was followed spectrophotometrically by measuring the rate of change in the values of the absorbance of the oxidation product at 437 nm. The optimum reaction conditions are PS (0.44×10^-3 mol·L^-1) and HClO4 (3.6×10^-6 mol·L^-1) at 25 ℃. Following this procedure, phosphate can be determined with a linear calibration graph up to 0.23 μg·mL^-1. The interference effect of several species was also investigated and it was found that the most common cations and anions did not interfere with the determination. The developed procedure was successfully applied to the determination of phosphate in natural waters and soil.  相似文献   

12.
A cobalt oxide nanoparticles (Co3O4NPs) and multi walled carbon nanotubes (MWCNTs) modified carbon paste electrodes were used to study the electrochemical behavior of linagliptin and empagliflozin in Britton Robinson buffer solution of pH 8.0 using cyclic and square wave voltammetry. The above mentioned modified electrodes showed highly sensitive sensing and gave an excellent anodic response for both drugs. The peak current varied linearly over the concentration ranges: 3.98×10?5–1.53×10?3 mol L?1 (18.82–723.00 μg/mL) and 7.94×10?6–1.07×10?4 mol L?1 (3.65–48.25 μg/mL) with determination coefficients of 0.9999 and 0.9998 for linagliptin and empagliflozin, respectively. The recoveries and relative standard deviations were found in the following ranges: 98.80 %–102.00 % and 0.23 %–1.90 % for linagliptin and 98.30 %–101.80 % and 0.11 %–1.86 % for empagliflozin. The detection and quantification limits were 1.13×10?5 and 3.76×10?5 mol L?1 (5.34and17.77 μg/mL) for linagliptin, 1.71×10?6and 5.68×10?6 mol L?1 (0.77 and 2.56 μg/mL) for empagliflozin. The proposed sensors have been successfully applied for the determination of the drugs in bulk, pharmaceutical formulations and biological fluids.  相似文献   

13.
The present work reports the critical comparison about the employment of three different supporting electrolytes (0.1 mol L−1 HClO4, 0.01 mol L−1 EDTA-Na2 + 0.06 mol L−1 NaCl + 2.0 mol L−1 HClO4 and 0.1 mol L−1 KSCN + 0.001 mol L−1 HClO4) and their instrumental and chemical optimisation for the simultaneous voltammetric determination of total mercury(II) and copper(II) in sediments and sea water at gold electrode, especially discussing the reciprocal interference problems.  相似文献   

14.
A sequential online extraction, clean‐up and separation system for the determination of betaine, l ‐carnitine and choline in human urine using column‐switching ion chromatography with nonsuppressed conductivity detection was developed in this work. A self‐packed pretreatment column (50 × 4.6 mm, i.d.) was used for the extraction and clean‐up of betaine, l ‐carnitine and choline. The separation was achieved using self‐packed cationic exchange column (150 × 4.6 mm, i.d.), followed by nonsuppressed conductivity detection. Under optimized experimental conditions, the developed method presented good analytical performance, with excellent linearity in the range of 0.60–100 μg mL−1 for betaine, 0.75–100 μg mL−1 for l ‐carnitine and 0.50–100 μg mL−1 for choline, with all correlation coefficients (R2) >0.99 in urine. The limits of detection were 0.15 μg mL−1 for betaine, 0.20 μg mL−1 for l ‐carnitine and 0.09 μg mL−1 for choline. The intra‐ and inter‐day accuracy and precision for all quality controls were within ±10.32 and ±9.05%, respectively. Satisfactory recovery was observed between 92.8 and 102.0%. The validated method was successfully applied to the detection of urinary samples from 10 healthy people. The values detected in human urine using the proposed method showed good agreement with the measurement reported previously.  相似文献   

15.
It is significant to develop a point-of-care testing (POCT) method for rapid detection of medicinal molecules. In this paper, a graphdiyne (GDY)-ionic liquid (IL) composite was prepared via one-step facile ultrasound preparation process and then modified on gold (Au) electrode surface by simple casting method. Scanning electron microscopy and transmission electron microscopy were used to characterize the morphology of GDY-IL composite. Cyclic voltammetric results proved that GDY-IL composite on the electrode surface could effectively improve electron transfer rate, which meant that GDY-IL composite had high conductivity with big surface area. Finally, the modified electrode exhibited excellent performances for rutin detection with wider linear range (8.0×10−9 mol L−1–2.0×10−6 mol L−1 and 2.0×10−6 mol L−1–1.5×10−4 mol L−1) and lower detection limit (2.7 nmol L−1, 3S0/S). The Nafion/GDY-IL/Au electrode showed good sensitivity and high selectivity, which was satisfactory in analytical application to real samples. Therefore, the GDY-IL composite modified electrode has the potential applications in the POCT for electrochemical analysis of various medicinal molecules.  相似文献   

16.
In this paper an ionic liquid modified carbon paste electrode (CILE) was prepared and methylene blue (MB) was electropolymerized on the CILE by using the cyclic voltammetric technique in the potential range from −1.0 V to 0.8 V (vs. SCE). A stable polymer film was obtained and exhibited a pair of redox peaks. The morphology and characteristics of poly(methylene blue) (PMB) film was studied by the techniques such as scanning electron microscopy and electrochemical impedance spectroscopy. This PMB modified CILE (PMB/CILE) showed excellent electrocatalytic response to 3,4‐dihydroxybenzoic acid with the increase of the electrochemical responses. The oxidation peak current had a linear relationship with 3,4‐dihydroxybenzoic acid concentration in the range of 5.0 × 10−4 ∼ 3.0 × 10−2 mol L−1 and the detection limit was 1.72 × 10−4 Mol L−1 (3 σ).  相似文献   

17.
ABSTRACT

This work was focused in to develop an electroanalytical method based on a direct modification of a glassy carbon electrode (GCE) by the deposition of successive aliquots of diluted dispersions of functionalised carbon nanotubes (MWCNT-COOH) in ethanol (0.1 mg.mL?1) aiming the determination of Diuron into seawater samples, a common antifouling substance, using differential pulse voltammetry as electroanalytical technique. The GCE/MWCNT-COOH showed a sensitivity of 2.20 μA/μmol L?1 about 10 times higher than the unmodified counterpart (GCE) which showed a sensitivity of 0.192 μA/μmol L?1. The limits of detection and quantificationwere 6.88 × 10?8 and 2.29 × 10?7 mol L?1 for GCE/MWCNT-COOH while for GCE were 7.87 × 10?7 and 2.62 × 10?6 mol L?1, respectively. The applicability was evaluated with spiked detectable amounts of Diuron into seawater samples. The recovery results were between 76% and 119%.  相似文献   

18.
Chemiluminescence (CL) of an acidic KMnO4 system in the presence of Tween 80 was investigated for the determination of sulpiride. Strong CL was recorded when a mixture of sulpiride and Tween 80 was injected into acidic KMnO4 solution. The experimental parameters affecting the CL intensity were carefully studied using flow injection mode. Under the optimum conditions, the CL intensity was proportional to the concentration of sulpiride in the range of 5.0 × 10−7 ∼ 1.0 × 10−4 g mL−1. The detection limit is 1.6 × 10−7 g mL−1 sulpiride, and the relative standard deviation for 1.0 × 10−6 g mL−1 sulpiride solution is 1.5% (n = 11). The proposed method has been successfully applied to the determination of sulpiride in tablets and in spiked human plasma and urine samples.  相似文献   

19.
A mesoporous zirconia modified carbon paste electrode was developed for electrochemical investigations of methyl parathion (MP, Phen‐NO2). The significant increase of the peak currents and the improvement of the redox peak potential indicate that mesoporous zirconia facilitates the electronic transfer of MP. The oxidation peak current was proportional to the MP concentration in the range from 1.0×10−8 to 1.0×10−5 mol L−1 with a detection limit of 4.6×10−9 mol L−1 (S/N=3) after accumulation under open‐circuit for 210 s. The proposed method was successfully applied to the determination of MP in apple samples.  相似文献   

20.
A simple, selective and sensitive kinetic method for the determination of nitrite in water was developed. The method is based on the catalytic effect of nitrite on the oxidation of methylene blue (MB) with bromate in a sulfuric acid medium. During the oxidation process, absorbance of the reaction mixture decreases with the increasing time, inversely proportional to the nitrite concentration. The reaction rate was monitored spectrophotometrically at λ = 666 nm within 30 s of mixing. Linear calibration graph was obtained in the range of 0.005–0.5 μg mL−1 with a relative standard deviation of 2.09 % for six measurements at 0.5 μg mL−1. The detection limit was found to be 0.0015 μg mL−1. The effect of different factors such as acidity, time, bromate concentration, MB concentration, ionic strength, and order of reactants additions is reported. Interference of the most common foreign ions was also investigated. The optimum experimental conditions were: 0.38 mol L−1 H2SO4, 5 × 10.4 mol L−1 KBrO3, 1.25 × 10.5 mol L−1 MB, 0.3 mol L−1 sodium nitrate, and 25°C. The proposed method was conveniently applied for the determination of nitrite in spiked drinking water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号