首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2719篇
  免费   104篇
  国内免费   8篇
化学   1652篇
晶体学   17篇
力学   84篇
数学   266篇
物理学   812篇
  2023年   29篇
  2022年   37篇
  2021年   65篇
  2020年   70篇
  2019年   60篇
  2018年   60篇
  2017年   56篇
  2016年   98篇
  2015年   65篇
  2014年   117篇
  2013年   161篇
  2012年   156篇
  2011年   197篇
  2010年   136篇
  2009年   130篇
  2008年   181篇
  2007年   116篇
  2006年   122篇
  2005年   120篇
  2004年   79篇
  2003年   70篇
  2002年   46篇
  2001年   30篇
  2000年   35篇
  1999年   39篇
  1998年   25篇
  1997年   18篇
  1996年   24篇
  1995年   25篇
  1994年   26篇
  1993年   29篇
  1992年   30篇
  1991年   22篇
  1990年   14篇
  1989年   16篇
  1988年   17篇
  1987年   15篇
  1986年   16篇
  1985年   23篇
  1984年   31篇
  1983年   23篇
  1982年   21篇
  1981年   20篇
  1980年   10篇
  1979年   13篇
  1978年   21篇
  1977年   15篇
  1976年   18篇
  1975年   8篇
  1974年   10篇
排序方式: 共有2831条查询结果,搜索用时 15 毫秒
1.
Herein, we report a Mott-Schottky catalyst by entrapping cobalt nanoparticles inside the N-doped graphene shell (Co@NC). The Co@NC delivered excellent oxygen evolution activity with an overpotential of merely 248 mV at a current density of 10 mA cm–2 with promising long-term stability. The importance of Co encapsulated in NC has further been demonstrated by synthesizing Co nanoparticles without NC shell. The synergy between the hexagonal close-packed (hcp) and face-centered cubic (fcc) Co plays a major role to improve the OER activity, whereas the NC shell optimizes the electronic structure, improves the electron conductivity, and offers a large number of active sites in Co@NC. The density functional theory calculations have revealed that the hcp Co has a dominant role in the surface reaction of electrocatalytic oxygen evolution, whereas the fcc phase induces the built-in electric field at the interfaces with N-doped graphene to accelerate the H+ ion transport.  相似文献   
2.
Journal of Algebraic Combinatorics - The symbolic powers, in general, are not equal to the ordinary powers. Therefore, one interesting question here is for what classes of ideals ordinary and...  相似文献   
3.
4.
A previously developed laser spallation technique has been modified to measure the tensile strength of thin film interfaces in-situ at temperatures up to 1100°C. Tensile strengths of Nb/A-plane sapphire, FeCrAl/A-plane sapphire and FeCrAlY/A-plane sapphire were measured up to 950°C. The measured strengths at high temperatures were substantially lower compared with their corresponding strengths at ambient temperature. For example, at 850°C, the interface tensile strength for the Nb/sapphire (151 ± 17 MPa), FeCrAl/sapphire (62 ± 8 MPa) and FeCrAlY/sapphire (82 ± 11 MPa) interface systems were lower by factors of approximately, 3, 5, and 8, respectively, over their corresponding ambient values. These results underscore the importance of using such in-situ measured values under operating conditions as the failure criterion in any life prediction or reliability models of such coated systems where local interface temperature excursions are expected. The results on alloy film interfaces also demonstrate that the presence of Y increases the strength of FeCrAl/Al2O3 interfaces.  相似文献   
5.
The use of graphite as a moderator in a low temperature thermal nuclear reactor is restricted due to accumulation of energy caused by displacement of atoms by neutrons and high energetic particles. Thermal transients may lead to a release of stored energy that may raise the temperature of the fuel clad above the design limit. Disordered carbon is thought to be an alternative choice for this purpose. Two types of disordered carbon composites, namely, CB (made up of 15 wt. % carbon black dispersed in carbonized phenolic resin) and PAN (made up of 20 vol. % chopped polyacrylonitrile carbon fibre dispersed in carbonized phenolic resin matrix) have been irradiated with 145 MeV Ne6+ ions at three fluence levels of 1.0×1013, 5.0×1013 and 1.5×1014 Ne6+/cm2, respectively. The XRD patterns revealed that both the samples remained disordered even after irradiation. The maximum release of stored energy for CB was 212 J/g and that of PAN was 906 J/g. For CB, the release of stored energy was a first order reaction with activation energy of 2.79 eV and a frequency factor of 3.72×1028 per second. 13% of the defects got annealed by heating up to 700 °C. PAN showed a third-order release rate with activation energy of 1.69 eV and a frequency factor of 1.77×1014 per second. 56% of the total defects got annealed by heating it up to 700 °C. CB seems to be the better choice than PAN as it showed less energy release with a slower rate. PACS 61.80.Jh; 61.80.-x; 61.43Er; 61.43.-j; 68.43.Vx  相似文献   
6.
This is the report of the subgroup QCD of Working Group-4 at WHEPP-9. We present the activities that had taken place in the subgroup and report some of the partial results arrived at following the discussion at the working group meetings.  相似文献   
7.
The study of the angular distribution of slow particles during high energy hadron-nucleus interaction indicates that emission of slow particles takes place from a thermally non-equilibrated system. This evidence has come out from the presence of intermittency - a phenomenon that reveals a fractal structure and represents a self-similarity in the particle production process. Hence, this study highlights inadequacy of cascade-evaporation model and advocates the need of its refinement.  相似文献   
8.
We consider the effects of quark masses to the perturbative thrust in e + e annihilation. In particular we show that perturbative power corrections resulting from non-zero quark masses considerably alters the size of the non-perturbative power corrections and consequently, significantly changes the fitted value of αs.  相似文献   
9.
The problem of estimating change points in various non-monotonic aging models is considered. A general methodology for consistent estimation of the change point is developed and applied to non-monotonic aging models based on the hazard rate function as well as on the mean residual life function.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号