首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
力学   1篇
数学   1篇
物理学   7篇
  2012年   2篇
  2010年   1篇
  2008年   1篇
  2005年   1篇
  2004年   1篇
  2001年   2篇
  1985年   1篇
排序方式: 共有9条查询结果,搜索用时 375 毫秒
1
1.
1. Introduction1.1 Silica nanoparticles and synthesis methods Silica (SiO2) nanoparticles are widely used in industry asan active filler for polymer reinforcement, a rheologicaladditive in fluids, a free flow agent in powders, and anagent for chemical mechanical polishing during IC (inte-grated circuit) fabrication (Sniegowski & de Boer, 2000).Silica powder is also used for producing silicon carbide(Koc & Cattamanchi, 1998) or opaque silica aerosols (Leeet al., 1995). Many methods can …  相似文献   
2.
3.
MN Vinoj  VC Kuriakose 《Pramana》2001,57(5-6):987-1001
In this paper, we consider nonlinear Schrödinger (NLS) equations, both in the anomalous and normal dispersive regimes, which govern the propagation of a single field in a fiber medium with phase modulation and fibre gain (or loss). The integrability conditions are arrived from linear eigen value problem. The variable transformations which connect the integrable form of modified NLS equations are presented. We succeed in Hirota bilinearzing the equations and on solving, exact bright and dark soliton solutions are obtained. From the results, we show that the soliton is alive, i.e. pulse area can be conserved by the inclusion of gain (or loss) and phase modulation effects.  相似文献   
4.
In this paper, we summarize the basic structures and properties of irreducible symplectic supercuspidal representations of GLn(F) over a p-adic local field F with characteristic zero, and explore possible topics for further investigation.  相似文献   
5.
We report a narrow-linewidth, tunable, gain-switched Cr:ZnSe laser operating between 2255 and 2455 nm. The spectral width of the laser was reduced from 125 nm to 0.3 nm by using injection seeding. Seeding was achieved with a second tunable CW Cr:ZnSe laser. The output wavelength was varied by tuning the wavelength of the seed laser. The seeded oscillator produced as high as 157 μJ pulses with 598 μJ incident pump pulse energy at a repetition rate of 1 kHz. The slope efficiency was determined to be 26%.  相似文献   
6.
AK Banerjee  MN Alam  AA Mamun 《Pramana》2001,56(5):643-656
Obliquely propagating altra-low-frequency dust-electromagnetic waves in a self-gravitating, warm, magnetized, two fluid dusty plasma system have been investigated. Two special cases, namely, dust-Alfvén mode propagating parallel to the external magnetic field and dustmagnetosonic mode propagating perpendicular to the external magnetic field have also been considered. It has been shown that effects of self-gravitational field, dust fluid temperature, and obliqueness significantly modify the dispersion properties of these ultra-low-frequency dust-electromagnetic modes. It is also found that in parallel propagating dust-Alfvén mode these effects play no role, but in obliquely propagating dust-Alfvén mode or perpendicular propagating dust-magnetosonic mode the effect of self-gravitational field plays destabilizing role whereas the effect of dust/ion fluid temperature plays stabilizing role.  相似文献   
7.
We have used (2)H NMR lineshape analyses and single crystal X-ray diffraction (XRD) to investigate the effects of molecular structure and crystalline environment on the rotational dynamics of methyl groups in four aromatic cycloalkanones. These include two methyl-substituted anthrones, one anthraquinone and one dibenzosuberone, which are known to undergo excited state H-atom tunneling from the ortho-methyl group to the carbonyl oxygen. With experiments conducted between 100 and 300K, samples 1,4-dimethylanthrone (DMAT) and 1,4-dimethylanthraquinone (DMAQ) were shown to enter the intermediate exchange regime (k(rot) approximately <10(7)s(-1)) at ca. 120K while samples of 1,4,10,10-tetramethylanthrone (TMAT) and 1,4-dimethyldibenzosuberone (DMDBS) remained in the fast exchange regime even at ca. 100K. Single crystal XRD analyses suggest that high intramolecular hindrance is avoided by molecular distortions, and that intermolecular contacts play an important role.  相似文献   
8.
We studied the spectroscopic characteristics of telluride glass with the host composition (0.85)TeO2-(0.15)WO3, containing 0.25 and 1.0 mol% thulium oxide (Tm2O3). By analyzing the absorption spectra with the Judd-Ofelt theory, the average radiative lifetimes of 305±7.5 μs and 1.95±0.02 ms were determined for the 3F4 and 3H4 levels, respectively. Measured fluorescence lifetime of the 3F4 level decreased from 218 to 51 μs for the 0.25 and 1.0 mol% Tm2O3 doped samples, respectively, indicating the effect of boosted non-radiative decay at higher doping concentrations. A similar trend was observed for the 3H4 level, where the fluorescence lifetime decreased from 1.86 ms to 350 μs at these concentrations. The quenching of the 1460 nm (3F43H4) emission in favor of the 1800 nm (3H43H6) emission due to cross relaxation was further evident in the fluorescence spectra of the samples. The calculated stimulated emission cross sections (3.73±0.1×10−21 cm2 at 1460 nm and 6.57±0.07×10−21 cm2 at 1808 nm) reveal the potential importance of the Tm3+:(0.85)TeO2-(0.15)WO3 glass for applications in fiber-optic amplifiers and fiber lasers.  相似文献   
9.
We employed various low-cost dispersion compensation methods to generate femtosecond pulses from a Kerr-lens mode-locked (KLM) Cr:ZnSe laser operating near 2400 nm. Prism pairs made of CaF2 and MgF2 and slabs of BK7 and YAG were tested. Pulses as short as 92 fs were obtained when a CaF2 prism pair was used in the resonator with a 1% output coupler. With a 6% output coupler and CaF2 prism pair, pulse energies as high as 1.8 nJ were obtained. The KLM operating point was further analyzed for different dispersion compensation scenarios by using the soliton area theorem to determine the nonlinear refractive index (n 2) of Cr:ZnSe. Results gave an n 2 value of (1.2±0.2)×10−18 m2/W in agreement with previous reports.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号