首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   2篇
物理学   2篇
  2019年   1篇
  2014年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
We demonstrate laser ultrasonic generation in polyetheretherketone(PEEK). A middle infrared ZnGeP2 optical parametric oscillator(ZGP-OPO) pumped by a Q-switched Ho:YAG laser is employed as the ultrasonic excitation source. The ZGP-OPO has a spectral range of 3.2–3.4 μm. At an output wavelength of 3.4 μm, the maximum average output power of ZGP-OPO is 3.05 W with a pulse width of 24.3 ns, corresponding to a peak power of approximately 127.5 kW. The ultrasound is generated by the laser converted from 3.2 to 3.4 μm in the PEEK composite. The maximum ultrasonic signal amplitude in PEEK is 33 mV under the condition of thermoelastic excitation at 3.4 μm. Ablation occurs in the CPRF sample when the energy fluence is over 122.45 m J/cm~2. PEEK has a stronger absorption at 3.4 μm and laser-ultrasound generation is influenced by the wavelength of the laser.  相似文献   
2.
We report on a high energy, high repetition rate Ho:YAG master oscillator and power amplifier (MOPA), res- onantly dual-end-pumped by Tm:YLF lasers at room temperature. At the pulse repetition frequency of i kHz, we demonstrate a maximum energy of 30mJ per pulse with a 28.2ns pulse width in a Ho:YAG oscillator system resonantly double-end-pumped by Tm:YLF lasers. A maximum energy of 52mJ per pulse with a 30.5ns pulse width is achieved in the Ho: YA G amplifier, corresponding to a peak power of approximately 1.7 MW. The output wavelength is at 2090.6nm and 2096.9nm, and a beam quality factor of M2-2.1 is achieved.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号