首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   2篇
化学   18篇
数学   3篇
物理学   1篇
  2021年   1篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2013年   3篇
  2012年   2篇
  2011年   3篇
  2010年   1篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  1996年   2篇
  1995年   1篇
排序方式: 共有22条查询结果,搜索用时 15 毫秒
1.
A glassy carbon electrode (GCE) was modified with electropolymerized films of amidosulfonic acid in pH 7.0 phosphate buffer solution (PBS) by cyclic voltammetry (CV). The modified electrode showed an excellent electrocatalytical effect on the oxidation of dopamine (DA). In pH 7.0 PBS, the anodic peak current increased linearly with the concentration of DA in the range of 5.0×10–7 1.0×10–4moldm–3, with a correlation coefficient of 0.9932, and a detection limit (S/N=3) of 1.0× 10–7moldm–3. The relative standard deviation of 10 successive scans was 2.5% for 1.0×10–6moldm–3 DA. The interference of ascorbic acid (AA) with the determination of DA could be eliminated because of the very distinct attracting interaction between DA cations and the negatively poly(amidosulfonic acid) film in pH 7.0 PBS. The proposed method exhibited good recovery and reproducibility.  相似文献   
2.
We have developed a highly sensitive and selective sensor for lead(II) ions. A glassy carbon electrode was modified with Fe3O4 nanospheres and multi-walled carbon nanotubes, and this material was characterized by scanning electron microscopy and X-ray diffraction. The electrode displays good electrochemical activity toward Pb(II) and gives anodic and cathodic peaks with potentials at ?496 mV and ?638 mV (vs. Ag/AgCl) in pH?6.0 solution. The sensor exhibits a sensitive and fairly selective response to Pb(II) ion, with a linear range between 20 pM and 1.6 nM, and a detection limit as low as 6.0 pM (at a signal-to noise ratio of 3). The sensor was successfully applied to monitor Pb(II) in spiked water samples.
Figure
A fast and sensitive Pb(II) electrochemical sensor has been fabricated by modifying Fe3O4 nanospheres and multi-walled carbon nanotubes onto the pretreated glassy carbon electrode. The electrode displays good electrochemical activity toward Pb(II). And a low detection limit of 6.0 pM, high sensitivity, good reproducibility and stability provide the Fe3O4/MWCNTs/GCE a definite candidate for monitoring lead ion in real samples.  相似文献   
3.
Shuttle-like copper oxide (CuO) was prepared by a hydrothermal decomposition process. The resulting material was characterized by scanning electron microscopy and X-ray diffraction. It was then immobilized on the surface of a glassy carbon electrode modified with a film of poly(thionine). A pair of well-defined and reversible redox peaks for Hg(II) was observed with the resulting electrode in pH 7.0 solutions. The anodic and cathodic peak potentials occurred at 0.260 V and 0.220 V (vs. Ag/AgCl), respectively. The modified electrode displayed excellent amperometric response to Hg(II), with a linear range from 40 nM to 5.0 mM and a detection limit of 8.5 nM at a signal-to-noise ratio of 3. The sensor exhibited high selectivity and reproducibility and was successfully applied to the determination of Hg(II) in water samples.  相似文献   
4.
1引 言 非线性反问题广泛地存在于许多科学和工程问题中,反问题求解的主要困难在于问题的不适定性,即待求函数或参量不连续依赖于观测数据.用来求解非线性不适定问题的方法主要有Tikhonov正则化方法和迭代正则化方法[1,2,3,4].Tikhonov正则化方法是通过引入正则化参数及稳定泛函,将目标泛函离散化,从而得到解的一个稳定近似,即正则化解.  相似文献   
5.
A sensitive hydrazine sensor has been fabricated using copper oxide nanoparticles modified glassy carbon electrode (GCE) to form nano-copper oxide/GCE. The nano-copper oxide was electrodeposited on the surface of GCE in CuCl2 solution at −0.4 V and was characterized by Scanning electron microscopy and X-ray diffraction. The prepared modified electrode showed a good electrocatalytic activity toward oxidation of hydrazine. The electrochemical behavior of hydrazine on nano-copper oxide/GCE was explored. The oxidative current increased linearly with improving concentration of hydrazine on nano-copper oxide/GCE from 0.1 to 600 μM and detection limit for hydrazine was evaluated to be 0.03 μM at a signal-to-noise ratio of 3. The oxidation mechanism of hydrazine on the nano-copper oxide/GCE was also discussed. The fabricated sensor could be used to determine hydrazine in real water.  相似文献   
6.
Shuttle-like Fe2O3 nanoparticles (NPs) were prepared by microwave-assisted synthesis and characterized by scanning electron microscopy and X-ray diffraction. The NPs were immobilized on a glassy carbon electrode and then covered with dsDNA. The resulting electrode gives a pair of well-defined redox peaks for Pb(II) at pH 6.0, with anodic and cathodic peak potentials occurring at ?0.50?V and ?0.75?V (vs. Ag/AgCl), respectively. The amperometric response to Pb(II) is linear in the range from 0.12 to 40?nM, and the detection limit is 0.1?nM at a signal-to-noise ratio of 3. The sensor exhibits high selectivity and reproducibility.
Figure
A fast and sensitive Pb(II) electrochemical sensor has been fabricated by dropping Fe2O3 NPs and double-strand DNA onto the pretreated glassy carbon electrode. The sensor had high sensitivety, high sensitivity, ease of construction and utilization for Pb(II) determination.  相似文献   
7.
This work described a novel sensor for detection of l -tryptophan (Trp) by electrodeposition of gold nanoparticles (AuNPs) onto the poly(alizarin red S) film pre-cast on a glassy carbon electrode (GCE). Alizarin red S (ARS) was deposited on the surface of the GCE by electropolymerization, and gold nanoparticles (AuNPs) were attached onto the poly(ARS) film by electrodeposition, forming an AuNPs–PARS nanocomposite film-modified GCE (AuNPs–PARS/GCE). Then electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM) were used to characterize modified electrodes. The Nyquist diagrams of EIS indicated that the PARS film and AuNPs were successfully immobilized on the surface of GCE, and the electron transfer resistance value of electrode changed efficiently. The SEM image showed that the immobilized AuNPs were spherical in shape. The AuNPs–PARS/GEC displayed excellent amperometric response for Trp. The amperometric responses have two linear ranges from 0.02 to 0.5 μM and 0.5 to 20.0 μM, with sensitivities of 1.63(±0.08) and 0.21(±0.01)?μAμM?1, respectively. Its detection limit was 6.7 nM at a signal-to-noise ratio of 3. The proposed method was applied to determine Trp.
Figure
The procedure of the L-tryptophan sensor preparation  相似文献   
8.
Gold nanoparticles were self-assembled to the modified glassy carbon electrode (GC) with cysteamine (CA) to prepare the nano-Au/CA/GC modified electrode. The electrochemical behavior of epinephrine (EP) on the modified electrode was explored with cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Epinephrine gave a pair of redox peaks at Epa = 0.190 mV and Epc = −0.224 mV (versus SCE), respectively. The nano-Au/CA/GC modified electrode shows an excellent electrocatalytic activity for the oxidation of EP. The modified electrode could be used to determine EP in the presence of ascorbic acid (AA). The response of catalytic current with EP concentration shows a linear relation in the range of 1.0 × 10−7 to 5.0 × 10−4 mol L−1 with the correlation coefficient of 0.998. The detection limit is 4.0 × 10−8 mol L−1. The modified electrode exhibited a good reproducibility, sensitivity and stability for the determination of EP injection.  相似文献   
9.
A DNA biosensor was constructed by immobilizing a 20-mer oligonucleotide probe and hybridizing it with its complementary oligomer on the surface of a glassy carbon electrode modified with gold nanoparticles. The properties of the biosensor and its capability of recognizing its complementary sequence were studied by electrochemical impedance spectroscopy. The oxidative stress caused by cadmium ions can be monitored by differential pulse voltammetry using the cobalt(III)tris(1,10-phenanthroline) complex and methylene blue as electrochemical indicators. The biosensor is capable of indicating damage caused by Cd(II) ions in pH 6.0 solution. The results showed that the biosensor can be used for rapid screening for DNA damage.
Figure
DPV of DNA biosensors before (a, c) and after hybridization (b, d) at 1.0 ×10?C7 mol·L-1target DNA concentration, (a) probe DNA/Au/GCE and (b) dsDNA/Au/GCE (c) probe DNA/GCE, (d) dsDNA/GCE  相似文献   
10.
超微电极上恒电位法苯胺的电化学聚合研究   总被引:2,自引:0,他引:2  
杨周生  张祖训 《分析化学》1995,23(10):1143-1147
本文对超微盘电极上苯胺的恒电位电化学聚合进行了研究,对聚合电流随时间的关系进行了详细的讨论,提出了径向聚合计时电流方程式并进行了验证,实验结果与理论相符。  相似文献   
1 [2] [3] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号