首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   811篇
  免费   26篇
  国内免费   1篇
化学   725篇
晶体学   7篇
力学   6篇
数学   19篇
物理学   81篇
  2022年   4篇
  2021年   8篇
  2020年   13篇
  2019年   12篇
  2018年   6篇
  2017年   12篇
  2016年   12篇
  2015年   10篇
  2014年   37篇
  2013年   47篇
  2012年   55篇
  2011年   62篇
  2010年   24篇
  2009年   36篇
  2008年   57篇
  2007年   48篇
  2006年   51篇
  2005年   60篇
  2004年   50篇
  2003年   43篇
  2002年   48篇
  2001年   15篇
  2000年   10篇
  1999年   6篇
  1998年   10篇
  1997年   5篇
  1996年   5篇
  1995年   6篇
  1994年   7篇
  1993年   11篇
  1992年   8篇
  1991年   8篇
  1990年   5篇
  1989年   4篇
  1988年   2篇
  1987年   3篇
  1986年   4篇
  1985年   4篇
  1984年   4篇
  1983年   2篇
  1981年   3篇
  1980年   3篇
  1979年   4篇
  1976年   3篇
  1974年   1篇
  1972年   1篇
  1971年   1篇
  1968年   1篇
  1966年   2篇
  1962年   1篇
排序方式: 共有838条查询结果,搜索用时 281 毫秒
1.
The molecular orientation and strain‐induced crystallization of synthetic rubbers—polyisoprene rubber, polybutadiene rubber, and butyl rubber [poly(isobutylene isoprene)]—during uniaxial deformation were studied with in situ synchrotron wide‐angle X‐ray diffraction. The high intensity of the synchrotron X‐rays and the new data analysis method made it possible to estimate the mass fractions of the strain‐induced crystals and amorphous chain segments in both the oriented and unoriented states. Contrary to the conventional concept, the majority of the molecules (50–75%) remained in an unoriented amorphous state at high strains. Each synthetic rubber showed a different behavior of strain‐induced crystallization and molecular orientation during extension and retraction. Our results confirmed the occurence of strain‐induced networks in the synthetic rubbers due to the inhomogeneity of the crosslink distribution. The strain‐induced networks containing microfibrillar crystals and oriented amorphous tie chains were responsible for the ultimate mechanical properties. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 956–964, 2004  相似文献   
2.
Terahertz time-domain spectroscopy (THz-TDS) is used to study the intra- and intermolecular vibrational modes of aromatic carboxylic acids, for example, o-phthalic acid, benzoic acid, and salicylic acid, which form either intra- or intermolecular hydrogen bond(s) in different ways. Incorporating the target molecules in nano-sized spaces in mesoporous silicate (SBA-16) is found to be effective for the separate detection of intramolecular hydrogen bonding modes and intermolecular modes. The results are supported by an analysis of the differences in the peak shifts, which depend on temperature, caused by the different nature of the THz absorption. Raman spectra revealed that incorporating the molecules in the nano-sized pores of SBA-16 slightly changes the molecular structures. In the future, THz-TDS using nanoporous materials will be used to analyze the intra- and intermolecular vibrational modes of molecules with larger hydrogen bonding networks such as proteins or DNA.  相似文献   
3.
Summary We show that each holomorphic Wiener function has a skeleton which is intrinsic from several viewpoints. In particular, we study the topological aspects of the skeletons by using the local Taylor expansion for holomorphic Wiener functions.Supported in part by the Grant-in-Aid for Science Research 03740120 Min. Education  相似文献   
4.
Quantitative analysis of metal cation doping by solid oxide electrochemical doping (SOED) has been performed under galvanostatic doping conditions. A M–β″-Al2O3 (M=Ag, Na) microelectrode (contact radius: about 10 μm) was used as cation source to attain a homogeneous solid–solid contact between the β″-Al2O3 and doping target. In Ag doping into alkali borate glass, the measured dopant amount closely matched the theoretical value. High Faraday efficiencies of above 90% were obtained. This suggests that the dopant amount can be precisely controlled on a micromole scale by the electric charge during electrolysis. On the other hand, current efficiencies of Na doping into Bi2Sr2CaCu2Oy (BSCCO) ceramics depended on the applied constant current. Efficiencies of above 80% were achieved at a constant current of 10 μA (1.6 A cm−2). The relatively low efficiencies were explained by the saturation of BSCCO grain boundaries with Na. By contrast, excess Na was detected on the anodic surface of ceramics at a constant current of 100 μA (16 A cm−2). In the present study, we demonstrate that SOED enables micromole-scale control over dopant amount.  相似文献   
5.
A mesogenic‐type curing agent was synthesized to introduce a mesogenic group not only into epoxy resin backbones but also into the crosslink units. In the mesogenic curing agent system, the domain size became larger, and the network arrangement in each domain existed to a greater extent than that in a system cured with the ordinary diamine curing system according to the evidence from polarized optical micrographs and polarized Fourier transform infrared mapping measurements. Moreover, the fracture toughness of the system was considerably improved. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2486–2494, 2006  相似文献   
6.
Woodceramics, a carbon/carbon composite of plant-originated carbon reinforced by glassy carbon from phenolic resin, was prepared from apple pomace at carbonizing temperatures of 1073 K (AWC800) and 1473 K (AWC1200), and characterized by thermoanalytical methods and X-ray diffraction (XRD). Simultaneous differential scanning calorimetry (DSC) and thermogravimetric (TG) showed complicated overlapping reactions similar to those of coal. The initial temperature of pyrolysis was obtained by fitting logistic functions to observed TG data. The results suggested that AWC1200 contained more volatile matter than AWC800. In an inert atmosphere, complicated devolatilization takes place. In an oxidizing atmosphere, thermal change occurs roughly in four steps: desorption of physically adsorbed matter; pyrolysis into aliphatic and aromatic fragments; ignition; combustion of char. The oxidation resistance of AWC1200 was superior to AWC800.  相似文献   
7.
In supramolecular chemistry, a great deal of attention has focused on regulating guest binding via an external stimulus. To utilize the same effector for both highly guest-selective positive and negative allosteric effects, however, stricter and more precise regulation of the host structure is required. A novel allosteric host 1 binds Fe(II) to afford the pseudocryptand, 1.Fe(II), which bears a cavity that is surrounded by three polyether chains in a helical fashion. The binding selectivity of 1 (Na+ > K+ > Rb+ > Cs+) is the opposite of 1.Fe(II) (Cs+ > Rb+ > K+ > Na+). Single-ion transport through a liquid membrane shows ion selectivity similar to the equilibrium constants. To the best of our knowledge, this is the first example of an allosteric recognition system, in which the same effector, that is, Fe(II), exhibits both large positive and negative allosteric effects on equilibrium and dynamic recognition events. The X-ray analysis and 1H NMR examination indicate that the combination of the macrobicyclic effect and the intramolecular interchain interactions (CH-pi interaction and steric hindrance) finely controls the positive and negative allosteric effects, which depend on the size of the guest. The helical framework opens a new general method for constructing more sophisticated, controllable receptors for helical biomolecules, for example, DNA and proteins, and helical molecular devices such as a molecular coil or spring responding to a stimulus.  相似文献   
8.
A reaction of the P‐chiral compound (S,S)‐1,2‐bis(boranato(tert‐butyl)methylphosphino)ethane with an azobenzene derivative gave stimuli‐responsive polymers with P‐chiral phosphines in the main chain. This is the first example of a stimuli‐responsive P‐chiral polymer. The polymer isomerized from the trans to the cis form upon UV irradiation and reverted to the trans form reversibly. The polymer was able to coordinate to platinum, and the resulting polymer complex exhibited the Cotton effect owing to the chirality of the phosphorus atoms. The structure of the P‐chiral polymer obtained could be changed reversibly by light and thermal stimuli, and the polymer chain was induced to rotate helically when complexed with transition metals through the chiral phosphorus atoms.  相似文献   
9.
Abstract— 3, 7-Dimethyl-2, 4, 6, 8, 10-dodecapentaenal was synthesized for reconstitution of the retinochrome analog. Its opsin shift was 1000 cm 1 smaller than that of native retinochrome, whose chromophore contains the same number of double bonds. The conformational change from 6-s-trans to 6-s-cis , as figured in a retinal molecule, plays an important role in the formation of the retinochrome analog, based on the estimation of opsin shifts for retinal analogs locked in the 6-s conformation. Thus the conformation of the 6–7 single bond in the native retinochrome was suggested to be 6 -cis . Analysis of the circular dichroic spectra of retinochrome analogs revealed that the 6-s conformation is independent of the appearance of the β-band. The stereoselectivity in the photoisomerization of the retinal analogs by a retinochrome template depends on the hydrophobic binding in the region of the β-ionone ring.  相似文献   
10.
A convenient method for the synthesis of poly(benzoxazole)s of high molecular weights has been developed. These polymers were prepared readily by direct polycondensation of aromatic dicarboxylic acids containing phenyl either structure with 3,3′-dihydroxybenzidine dihydrochloride using phosphorus pentoxide/methanesulfonic acid (PPMA) as condensing agent and solvent. Polycondensations proceeded fast and was completed within 5 h at 140°C and produced poly(benzoxazole)s with inherent viscosities up to 4.6 dL/g. Model compound work was performed in detail to demonstrate the feasibility of the reaction for polymer formation. The thermogravimetry of the aromatic poly(benzoxazole)s showed 10% weight loss in air and nitrogen at 450–505°C and 465–535°C, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号