首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   171篇
  免费   2篇
化学   115篇
力学   1篇
数学   4篇
物理学   53篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2016年   1篇
  2014年   3篇
  2013年   5篇
  2012年   9篇
  2011年   11篇
  2010年   6篇
  2009年   3篇
  2008年   12篇
  2007年   14篇
  2006年   14篇
  2005年   9篇
  2004年   10篇
  2003年   6篇
  2002年   7篇
  2001年   6篇
  2000年   5篇
  1999年   2篇
  1998年   1篇
  1996年   4篇
  1995年   1篇
  1994年   3篇
  1993年   4篇
  1992年   4篇
  1990年   1篇
  1989年   3篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1984年   4篇
  1983年   4篇
  1982年   3篇
  1980年   3篇
  1979年   2篇
  1978年   5篇
  1972年   1篇
排序方式: 共有173条查询结果,搜索用时 234 毫秒
1.
2.
3.
The influence of substituents and structure on the 13C NMR spectra of four series of benzoxathiepine derivatives has been investigated. Signal assignments in the 13C NMR spectra have been facilitated by the use of several predictive methods, permitting comparison of their relative efficacy.  相似文献   
4.
5.
6.
The technique of hydrogen/deuterium isotopic substitution has been used to extract detailed information concerning the solvent structure in pure ammonia and metallic lithium-ammonia solutions. In pure ammonia we find evidence for approximately 2.0 hydrogen bonds around each central nitrogen atom, with an average N-H distance of 2.4 A. On addition of alkali metal, we observe directly significant disruption of this hydrogen bonding. At 8 mol % metal there remains only around 0.7 hydrogen bond per nitrogen atom. This value decreases to 0.0 for the saturated solution of 21 mol % metal, as all ammonia molecules have then become incorporated into the tetrahedral first solvation spheres of the lithium cations. In conjunction with a classical three-dimensional computer modeling technique, we are now able to identify a well-defined second cationic solvation shell. In this secondary shell the nitrogen atoms tend to reside above the faces and edges of the primary tetrahedral shell. Furthermore, the computer-generated models reveal that on addition of alkali metal the solvent molecules form voids of approximate radius 2.5-3.0 A. Our data therefore provide new insight into the structure of the polaronic cavities and tunnels, which have been theoretically predicted for lithium-ammonia solutions.  相似文献   
7.
Rapid PCR in a continuous flow device   总被引:6,自引:0,他引:6  
Continuous flow polymerase chain reaction (CFPCR) devices are compact reactors suitable for microfabrication and the rapid amplification of target DNAs. For a given reactor design, the amplification time can be reduced simply by increasing the flow velocity through the isothermal zones of the device; for flow velocities near the design value, the PCR cocktail reaches thermal equilibrium at each zone quickly, so that near ideal temperature profiles can be obtained. However, at high flow velocities there are penalties of an increased pressure drop and a reduced residence time in each temperature zone for the DNA/reagent mixture, that potentially affect amplification efficiency. This study was carried out to evaluate the thermal and biochemical effects of high flow velocities in a spiral, 20 cycle CFPCR device. Finite element analysis (FEA) was used to determine the steady-state temperature distribution along the micro-channel and the temperature of the DNA/reagent mixture in each temperature zone as a function of linear velocity. The critical transition was between the denaturation (95 degrees C) and renaturation (55 degrees C-68 degrees C) zones; above 6 mm s(-1) the fluid in a passively-cooled channel could not be reduced to the desired temperature and the duration of the temperature transition between zones increased with increased velocity. The amplification performance of the CFPCR as a function of linear velocity was assessed using 500 and 997 base pair (bp) fragments from lambda-DNA. Amplifications at velocities ranging from 1 mm s(-1) to 20 mm s(-1) were investigated. The 500 bp fragment could be observed in a total reaction time of 1.7 min (5.2 s cycle(-1)) and the 997 bp fragment could be detected in 3.2 min (9.7 s cycle(-1)). The longer amplification time required for detection of the 997 bp fragment was due to the device being operated at its enzyme kinetic limit (i.e., Taq polymerase deoxynucleotide incorporation rate).  相似文献   
8.
Capillary gel electrophoresis (CGE) and polymer-based microelectrophoretic platforms were investigated to analyze low-abundant point mutations in certain gene fragments with high diagnostic value for colorectal cancers. The electrophoretic separations were carried out on single-stranded DNA (ssDNA) products generated from an allele-specific ligation assay (ligase detection reaction, LDR), which was used to screen for a single base mutation at codon 12 in the K-ras oncogene. The presence of the mutation generated a ssDNA fragment that was >40 base pairs (bp) in length, while the primers used for the ligation assay were <30 bp in length. Various separation matrices were investigated, with the success of the matrix assessed by its ability to resolve the ligation product from the large molar excess of unligated primers when the mutant allele was lower in copy number compared to the wild-type allele. Using CGE, LDR product models (44 and 51 bp) could be analyzed in a cross-linked polyacrylamide gel with a 1000-fold molar excess of LDR primers (25 bp) in approximately 45 min. However, when using linear polyacrylamide gels, these same fragments could not be detected due to significant electrokinetic biasing during injection. A poly(methylmethacrylate) (PMMA) microchip of 3.5 cm effective column length was used with a 4% linear polyacrylamide gel to analyze the products generated from an LDR. When the reaction contained a 100-fold molar excess of wild-type DNA compared to a G12.2D mutant allele, the 44 bp ligation product could be effectively resolved from unligated primers in under 120 s, nearly 17 times faster than the CGE format. In addition, sample cleanup was simplified using the microchip format by not requiring desalting of the LDR prior to loading.  相似文献   
9.
We report on the coupling of a polymer-based microfluidic chip to a MALDI-TOF MS using a rotating ball interface. The microfluidic chips were fabricated by micromilling a mold insert into a brass plate, which was then used for replicating polymer microparts via hot embossing. Assembly of the chip was accomplished by thermally annealing a cover slip to the embossed substrate to enclose the channels. The linear separation channel was 50 microm wide, 100 microm deep, and possessed an 8 cm effective length separation channel with a double-T injector (V(inj) = 10 nL). The exit of the separation channel was machined to allow direct contact deposition of effluent onto a specially constructed rotating ball inlet to the mass spectrometer. Matrix addition was accomplished in-line on the surface of the ball. The coupling utilized the ball as the cathode transfer electrode to transport sample into the vacuum for desorption with a 355 nm Nd:YAG laser and analyzed on a TOF mass spectrometer. The ball was cleaned online after every rotation. The ability to couple poly(methylmethacrylate) microchip electrophoresis devices for the separation of peptides and peptide fragments produced from a protein digest with subsequent online MALDI MS detection was demonstrated.  相似文献   
10.
Styrene has been copolymerized at low conversion with minor quantities of p-divinyl-benzene (p-DVB) in (10–15%) solution in toluene and cyclohexane. Under these conditions the molecular weight of the polystyrene formed in the absence of p-DVB was controlled by chain transfer, and the copolymerization coefficients of the styrene and the p-DVB agreed with previous work. Polymer molecular weights were studied as a function of conversion. At very low conversions the number-average (2.2 × 105) and the weight-average (4.4 × 105) molecular weights were unaffected by substituting some of the styrene by p-DVB, but as the reaction continued M?n increased slowly and M?w much faster. On the other hand, even at the lowest conversions the intrinsic viscosity was drastically reduced by the introduction of p-DVB, and the radius of gyration, as measured by light scattering, fell. Infrared studies on the polymer show that the concentration of pendent double bonds in low-conversion copolymers is about half of the doubly substituted phenyl groups. It is concluded that the first polymer chains formed are extensively cyclized with the formation of a relatively large number of small rings.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号