首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   1篇
化学   17篇
晶体学   1篇
数学   1篇
物理学   8篇
  2022年   1篇
  2019年   4篇
  2018年   1篇
  2012年   1篇
  2011年   5篇
  2008年   2篇
  2007年   2篇
  2006年   3篇
  2005年   2篇
  2003年   2篇
  2002年   3篇
  1998年   1篇
排序方式: 共有27条查询结果,搜索用时 15 毫秒
1.
The technique of hydrogen/deuterium isotopic substitution has been used to extract detailed information concerning the solvent structure in pure ammonia and metallic lithium-ammonia solutions. In pure ammonia we find evidence for approximately 2.0 hydrogen bonds around each central nitrogen atom, with an average N-H distance of 2.4 A. On addition of alkali metal, we observe directly significant disruption of this hydrogen bonding. At 8 mol % metal there remains only around 0.7 hydrogen bond per nitrogen atom. This value decreases to 0.0 for the saturated solution of 21 mol % metal, as all ammonia molecules have then become incorporated into the tetrahedral first solvation spheres of the lithium cations. In conjunction with a classical three-dimensional computer modeling technique, we are now able to identify a well-defined second cationic solvation shell. In this secondary shell the nitrogen atoms tend to reside above the faces and edges of the primary tetrahedral shell. Furthermore, the computer-generated models reveal that on addition of alkali metal the solvent molecules form voids of approximate radius 2.5-3.0 A. Our data therefore provide new insight into the structure of the polaronic cavities and tunnels, which have been theoretically predicted for lithium-ammonia solutions.  相似文献   
2.
The structure of the trimolecular liquid mixture of 2:6:1 cyclohexene, tert-butyl alcohol, and water has been investigated using hydrogen/deuterium substitution neutron scattering techniques, and a three-dimensional structural model refined to be consistent with the experimental data has been built using the technique of Empirical Potential Structure Refinement. The model shows a well-mixed solution of the three molecular components where the competing interactions between the nonpolar cyclohexene and polar water molecules are balanced in the solution leading to largely pure-alcohol-like interactions between the tert-butyl alcohol molecules. Cyclohexene molecules favor direct solvation by alcohol methyl groups while water molecules are accommodated, dispersed throughout the solution, via hydrogen bonding interactions with the alcohol molecule hydroxyl groups. Rare occurrences of direct cyclohexene-water interactions are of the classic hydrophobic hydration type and no evidence is found for microscopic heterogeneity in the trimolecular mixture in contrast to the general findings for binary alcohol-water solutions.  相似文献   
3.
Time resolved energy dispersive X-ray absorption spectroscopy has been used to follow the structural evolution of the inner-sphere electron transfer reaction between [IrCl6]2- and [Co(CN)5]3-, and to characterise the local structure of the iridium metal centre in the bridged activated complex formed during the reaction.  相似文献   
4.
The hydrophobic interaction is often thought to increase with increasing temperature. Although there is good experimental evidence for decreased aqueous solubility and increased clustering of both nonpolar and amphiphilic molecules as temperature is increased, the detailed nature of the changes in intermolecular interactions with temperature remain unknown. By use of isotope substitution neutron scattering difference measurements on a 0.04 mole fraction solution of tert-butanol in water as the solute clustering passes through a temperature maximum, the changes in local intermolecular structures are examined. Although, as expected, the solute molecules cluster through increased contact between their nonpolar head groups with the exclusion of water, the detailed geometry of the mutual interactions changes as temperature increases. As the clustering breaks up with further temperature increase, the local structures formed do not mirror those that were found in the low-temperature dispersed system: the disassembly process is not the reverse of assembly. The clusters formed by the solute head groups are reminiscent of structures that are found in systems of spherical molecules, modulated by the additional constraint of near-maximal hydrogen bonding between the polar tails of the alcohol and the solvent water. Although the overall temperature behavior is qualitatively what would be expected of a hydrophobically driven system, the way the system resolves the competing interactions and their different temperature dependencies is complex, suggesting it could be misleading to think of the aggregation of aqueous amphiphiles solely in terms of a hydrophobic driving force.  相似文献   
5.
When a time harmonic electromagnetic wave impinges on a slaba certain portion of the wave creates heat within the slab throughdipolar and ohmic heating. The electrical and thermal propertiesof the material dictate the dynamical nature of the heatingprocess, as well as the steady-state temperature profile. Thematerial considered here is a slab of fluid. We consider thecase where the fluid is bounded by thin rigid layers of transparentmaterial. The steady-state heating profile governs the typesof convective motions that can occur and also affects the stabilitycharacteristics of temperature, pressure and velocity perturbationsintroduced in the slab. The main objective here is to examinesuch stability characteristics, initially in the linear regime.Both rigid-rigid and rigid-free configurations are considered.  相似文献   
6.
Liquids under confinement exhibit different properties compared with their corresponding bulk phases, for example, miscibility, phase transitions, and diffusion. The underlying cause is the local ordering of molecules, which is usually only studied using pure simulation methods. Herein, we derive experimentally the structure of benzene confined in MCM‐41 using total neutron scattering measurements. The study reveals a layering of molecules across a pore, and four concentric cylindrical shells can be distinguished for a pore with the radius of 18 Å. The nanoscale confinement of the liquid has a major effect on the spatial and orientational correlations observed between the molecules, when compared with the structure of the bulk liquid. These differences are most marked for molecules in parallel configurations, and this suggests differences in chemical reactivity between the confined and bulk liquids.  相似文献   
7.
Hydrogen/deuterium isotopic substitution neutron diffraction techniques were used to measure the structural correlation functions in a 0.23 mole fraction solution of tetrahydrofuran in water at room temperature. Empirical potential structure refinement (EPSR) was used to build a three-dimensional model of the liquid structure that is consistent with the experimental data. Detailed analysis shows a preference for nonpolar interactions between the cyclic ether molecules plus polar interactions between the ether and solvent water and hydrophobic hydration of the nonpolar regions of the solute. The increase in the number of hydrogen-bond-acceptor sites relative to the number of hydrogen-bond-donor sites in this system, compared to the balanced situation that would be found in pure water, has a marked compressive effect on the structure of the solvent. Despite the small size of the solvent water molecules, the 0.23 mole fraction aqueous solution is still found to contain small voids akin to those in pure liquid tetrahydrofuran. In contrast to the positive surface charge of the voids in the pure system, the average void in this aqueous solution is found to have a net negative charge. This is due to contributions from the water oxygen atoms that are negatively polarized by their intramolecular bonding.  相似文献   
8.
Neutron diffraction with isotope substitution is used to determine the structures of high (HDA) and low (LDA) density amorphous ice. Both "phases" are fully hydrogen bonded, tetrahedral networks, with local order similarities between LDA and ice Ih, and HDA and liquid water. Moving from HDA, through liquid water and LDA to ice Ih, the second shell radial order increases at the expense of spatial order. This is linked to a fifth first neighbor "interstitial" that restricts the orientations of first shell waters. This "lynch pin" molecule which keeps the HDA structure intact has implications for the nature of the HDA-LDA transition that bear on the current metastable water debate.  相似文献   
9.
The liquid structure of 1-methyl-4-cyanopyridinium bis{(trifluoromethyl)sulfonyl}imide, a prototypical ionic liquid containing an electron-withdrawing group on the cation, has been investigated at 368 K. Experimental neutron scattering combined with empirical potential structure refinement analysis of the data and classical molecular dynamics simulations have been used to probe the liquid structure in detail. Both techniques generated highly consistent results that provide valuable validation of the force fields and refinement approaches. A significant degree of apparent charge ordering is found in the liquid structure, although the nonspherical shape of the ions results in interpenetration of cations into the first shell of adjacent cations, with much shorter closest contact distances than the averaged center-of-mass cation-cation and cation-anion separations.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号