首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64篇
  免费   0篇
化学   64篇
  2014年   2篇
  2013年   3篇
  2012年   5篇
  2011年   3篇
  2010年   1篇
  2008年   4篇
  2007年   6篇
  2006年   5篇
  2005年   9篇
  2004年   12篇
  2003年   2篇
  2002年   3篇
  2000年   3篇
  1996年   1篇
  1993年   1篇
  1991年   2篇
  1977年   1篇
  1974年   1篇
排序方式: 共有64条查询结果,搜索用时 562 毫秒
1.
Solution properties of a drug and its partitioning into lipid bilayers were studied for drug extraction using several different techniques, such as surface tension, zeta potential, ultra filtration and UV-Vis spectroscopy. From the surface tension study it was found that the presence of salt makes the drug molecules more surface-active. Zeta potential revealed the adsorption of the drug into the liposome bilayers to be governed mostly by electrostatic forces. The drug retention volume was expressed as a capacity factor, K, and that was normalized with respect to the amount of the immobilized phospholipids. The K-values for the positively charged drug on the liposomes decreased in the presence of phosphate buffer due to the presence of the oppositely charged ions. The above methods can thus be used to understand the mechanism of drug-membrane interaction and quantification of drug absorption into liposomes.  相似文献   
2.
Interactions of surfactants with solid substrates are important in the controlling of processes such as flotation, coating, flocculation and sedimentation. These interactions usually lead to adsorption on solids, but can also result in an exclusion of the reagents with dire consequences. In this work electrostatic exclusion of negatively charged dodecylbenzene sulfonate micelles from quartz/water, Bio-Sil/water and alumina/water interfaces has been investigated as a function of pH and ionic strength. Measurable negative adsorption of these surfactants from similarly charged solid/liquid interface was observed in the micellar region. In the case of porous samples with large surface area, comparison of pore size with the micelle size is necessary to avoid any erroneous conclusions regarding the role of electrostatic exclusion in a given system. A theoretical model for the electrostatic exclusion of micelles is developed and used to calculate the adsorption of negatively charged dodecylbenzene sulfonate on negatively charged quartz (pH 7), silica (Bio-Sil A, pH 3) and alumina (pH 11) in the micellar concentration region. The micellar exclusion values calculated using the model are in excellent agreement with the experimental results.  相似文献   
3.
Structural changes of pyrene-labeled and unlabeled poly(maleic acid/octyl vinyl ether) (PMAOVE) and poly(maleic acid/methyl vinyl ether) (PMAMVE) with changes in pH have been investigated in this study. The changes in the photophysical properties of pyrene are interpreted to investigate uncoiling or swelling of the polymeric chains with pH. The vibrational fine structure of the pyrene fluorescence (I(3)/I(1)) and the ratio between excimer and monomer fluorescence (I(e)/I(m)) of both pyrene-labeled and unlabeled PMAMVE and PMAOVE suggest that, at pH 4, the polymers are in the coiled form and PMAOVE forms hydrophobic nanodomains. An increase in pH ionizes a number of COOH groups on both PMAMVE and PMAOVE, which leads to the stretching or swelling of the polymers.  相似文献   
4.
Uniform spreading of oil on solid surfaces is important in many processes where proper lubrication is required and this can be controlled using surfactants. The role of oil–solid interfacial self-assembled surfactant structure (SASS) in oil spreading is examined in this study for the case of hexadecane-surfactant droplet spreading on a flat horizontal copper surface, with triphenyl phosphorothionate surfactants having varying chain lengths (0 to 9). It is shown that the frictional forces (FSASS) as determined by the SASS regulate droplet spreading rate according to surfactant chain length; surfactants with longer chains led to higher reduction in the spreading rate. The extent of such forces, FSASS, depends on the surfactant density of the evolving SASS, and specific configuration the evolving SASS exhibit as per the orientations of the surfactant chains therein. Thus, FSASS = [k1 + k2(t)] Γδ(t), where Γδ(t) is the surfactant adsorption density of SASS at time ‘t’ during evolution, and, k1 and k2(t) are the force coefficients for Γδ(t) and orientations (as a function of spreading time) of the surfactant chains respectively. As a SASS evolves/grows along with adsorption of surfactants at the spreading induced fresh interface, the k1Γδ(t) component of FSASS increases and contributes to reduction in the net spreading force (S). With a decrease in the net spreading force, the existence of a cross-over period, during which the transition of the spatial dynamics of the chains from disordered to realignment/packing induced ordered orientation occurs, has been inferred from the FSASS vs. chain length relationships. Such relationships also suggested that the rate of realignment/packing is increased progressively particularly due the realignment/packing induced decrease in the net spreading force. Therefore, the realignment process is a self-induced process, which spans a measurable period of time (several minutes), the cross-over period, during which the net spreading force decreases essentially due to such self-induced process.  相似文献   
5.
Comb polymers are commonly used as dispersants to stabilize highly concentrated cement suspensions. The effectiveness of such polymeric additives to stabilize these suspensions is determined to a large extent by the amount adsorbed. In this study we investigated the adsorption characteristics of various comb dispersant containing different graft densities on surfaces of cement particle. The effect of inorganic salts on their adsorption was also examined in order to elucidate their adsorption mechanism. The results show that the adsorption of comb polymer dispersants on cement surface conforms approximately to Langmuir's adsorption isotherm and the characteristic plateau A s and adsorption free energy ΔGads are largely dependent on the anionic group content of the comb polymers. The A s and ΔGads increase with increasing anionic group content. This information suggests that the adsorption of comb polymers on cement surfaces is dominated by electrostatic interaction between COO-groups on the comb polymers and the positive surface of the cement. This conclusion is supported by effects of inorganics such as calcium and sulfate ions, and diffuse reflectance FTIR spectroscopy. The implication of results for tuning polymers for the required performance in cement manufacture should be noted.  相似文献   
6.
The ability of small particles to associate with DNA and to transport it to desired targets without being subjected to interferences can make them efficient vehicles for gene delivery. Keeping these requirements in mind, zwitterionic latex particles with two different functional tethers were chosen for studying their interaction with DNA as vehicle complexes. From adsorption and electrokinetic studies, it is evident that zwitterionic latex particles can have marked association with DNA. Moreover, DNA-latex complexation does not provoke undesired aggregation of latex particles. These characteristics are important for it to carry the DNA efficiently under changing media conditions.  相似文献   
7.
To develop structure-property relationships for surfactants that control their adsorption, solubilization, and micellization behavior in mixed systems and to develop predictive models based on such relationships, it is necessary to acquire quantitative information on various species present in these complex systems. The analytical ultracentrifugation technique is selected for the first time to characterize the species present in mixed micellar solutions due to its powerful ability to separate particles on the basis of their size and shape. Two nonionic surfactants, n-dodecyl-beta-D-maltoside (DM) and nonyl phenol ethoxylated decyl ether (NP-10), and their 1:1 molar ratio mixture were investigated in this study. Micelles of the nonionic surfactants and their mixture are asymmetrical in shape at the critical micelle concentration (cmc). Interestingly, unlike ionic surfactants, the micellar growths of the nonionic surfactants were found to occur at concentrations immediately above the cmc. The results from both sedimentation velocity and sedimentation equilibrium experiments suggest coexistence of two types of micelles in nonyl phenol ethoxylated decyl ether solutions and in its mixture with n-dodecyl-beta-D-maltoside, while only one micellar species is present in n-dodecyl-beta-D-maltoside solutions. Type 1 micelles were primary micelles at the cmc, while type 2 micelles were elongated micelles. The differences in the micellar shapes of n-dodecyl-beta-D-maltoside and nonyl phenol ethoxylated decyl ether are attributed to packing parameters detected by their molecular structures.  相似文献   
8.
Activities of the enzymes, protease subtilisin and horse radish peroxidase (HRP) have been increased 50 and 40%, respectively, in the presence of the nonionic surfactant, alkyl polyglucoside, compared with the activities in buffer alone. This enzyme hyperactivity reaches a peak at 3.0 mm of surfactant. Investigation into the structure of surfactant aggregates indicates “giant” micelle superstructures at this range of surfactant concentration of 1.7 μm in diameter—dramatically decreasing to 60 and 70 nm at higher surfactant concentrations, while surface tension measurements indicate two critical micelle concentration inflection points at 0.2 and 5.0 mm , which suggests transitions in micelle structure with respect to concentration. Furthermore, electron spin resonance (ESR) indicates that the micelles in first critical micelle concentration regime are loosely packed relative to the second aggregate phase. We hypothesize that this loose packing results in diminished hydration shell repulsion between the micelles, leading to the large, micrometer‐sized aggregates. We further hypothesize that it is the interaction with these loosely packed micelles that affects the flexibility of the HRP and protease enzyme structure. Time‐resolved fluorescence anisotropy of subtilisin in Brij‐30 indicates increasing flexibility of catalytic active site with surfactant concentration. This is correlated with an increase in enzymatic activity.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号