首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   4篇
化学   23篇
力学   2篇
数学   2篇
物理学   9篇
  2021年   1篇
  2019年   1篇
  2016年   1篇
  2015年   3篇
  2013年   1篇
  2012年   4篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2006年   2篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  2001年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1985年   2篇
  1979年   1篇
  1974年   1篇
  1968年   1篇
排序方式: 共有36条查询结果,搜索用时 308 毫秒
1.
2.
1. Introduction1.1 Silica nanoparticles and synthesis methods Silica (SiO2) nanoparticles are widely used in industry asan active filler for polymer reinforcement, a rheologicaladditive in fluids, a free flow agent in powders, and anagent for chemical mechanical polishing during IC (inte-grated circuit) fabrication (Sniegowski & de Boer, 2000).Silica powder is also used for producing silicon carbide(Koc & Cattamanchi, 1998) or opaque silica aerosols (Leeet al., 1995). Many methods can …  相似文献   
3.
A reversed-flow gas-chromatography (RF-GC) apparatus for the measurement of binary diffusion coefficients is described and utilized to measure the binary diffusion coefficients for several systems at temperatures from (300 to 723)K. Hydrocarbons are detected using flame ionization detection, and inert species can be detected by thermal conductivity. The present apparatus has been utilized to measure diffusion coefficients at substantially higher temperatures than previous RF-GC work. Characterization of the new apparatus was accomplished by comparing measured binary diffusion coefficients of dilute argon in helium to established reference values. Further diffusion coefficient measurements for dilute helium in argon and dilute nitrogen in helium (using thermal conductivity detection) and dilute methane in helium (using flame ionization detection) were performed and found to be in excellent agreement with literature values. The measurement of these well-established diffusion coefficients has shown that specific experimental conditions are required for accurate diffusion measurements using this technique, particularly at higher temperatures. Numerical simulations of the diffusion experiments are presented to demonstrate that artifacts of the analysis procedure must be specifically identified to ensure accuracy, particularly at higher temperatures.  相似文献   
4.
5.
6.
7.
The decomposition and intramolecular H-transfer isomerization reactions of the 1-pentyl radical have been studied at temperatures of 880 to 1055 K and pressures of 80 to 680 kPa using the single pulse shock tube technique and additionally investigated with quantum chemical methods. The 1-pentyl radical was generated by shock heating dilute mixtures of 1-iodopentane and the stable products of its decomposition have been observed by postshock gas chromatographic analysis. Ethene and propene are the main olefin products and account for >97% of the carbon balance from 1-pentyl. Also produced are very small amounts of (E)-2-pentene, (Z)-2-pentene, and 1-butene. The ethene/propene product ratio is pressure dependent and varies from about 3 to 5 over the range of temperatures and pressures studied. Formation of ethene and propene can be related to the concentrations of 1-pentyl and 2-pentyl radicals in the system and the relative rates of five-center intramolecular H-transfer reactions and β C-C bond scissions. The 3-pentyl radical, formed via a four-center intramolecular H transfer, leads to 1-butene and plays only a very minor role in the system. The observed (E/Z)-2-pentenes can arise from a small amount of beta C-H bond scission in the 2-pentyl radical. The current experimental and computational results are considered in conjunction with relevant literature data from lower temperatures to develop a consistent kinetics model that reproduces the observed branching ratios and pressure effects. The present experimental results provide the first available data on the pressure dependence of the olefin product branching ratio for alkyl radical decomposition at high temperatures and require a value of <ΔE(down)(1000 K)> = (675 ± 100) cm(-1) for the average energy transferred in deactivating collisions in an argon bath gas when an exponential-down model is employed. High pressure rate expressions for the relevant H-transfer reactions and β bond scissions are derived and a Rice Ramsberger Kassel Marcus/Master Equation (RRKM/ME) analysis has been performed and used to extrapolate the data to temperatures between 700 and 1900 K and pressures of 10 to 1 × 10(5) kPa.  相似文献   
8.
MN Vinoj  VC Kuriakose 《Pramana》2001,57(5-6):987-1001
In this paper, we consider nonlinear Schrödinger (NLS) equations, both in the anomalous and normal dispersive regimes, which govern the propagation of a single field in a fiber medium with phase modulation and fibre gain (or loss). The integrability conditions are arrived from linear eigen value problem. The variable transformations which connect the integrable form of modified NLS equations are presented. We succeed in Hirota bilinearzing the equations and on solving, exact bright and dark soliton solutions are obtained. From the results, we show that the soliton is alive, i.e. pulse area can be conserved by the inclusion of gain (or loss) and phase modulation effects.  相似文献   
9.
Monitoring extracellular acidification rates (ECARs) is important for the study of cellular activities, since it allows for the evaluation of factors that alter metabolic function, such as stimulants, inhibitors, toxins as well as receptor and non-receptor mediated events. While the light addressable potentiometric sensor (Cytosensor Microphysiometer) has been the principal tool for ECARs measurement in the past, this work introduces a novel method that exploits an immobilized pH indicator on the surface of microcarrier beads (Sephadex) and is probed with a fiber optic coupled spectrophotometer. Likewise, live cells under investigation were also immobilized on microcarrier beads (Cytopore). These beads are metered, transported and monitored within a microfluidic system, termed as the Lab-on-Valve (LOV). Use of carrier beads in conjunction with Bead Injection Spectrophotometry and a Lab-on-Valve module (BIS-LOV), makes ECAR measurements reliable and automated. The feasibility of the BIS-LOV approach is demonstrated measuring ECARs of the mouse hepatocyte cell line, TABX.2S, grown on Cytopore beads packed within the central channel of the LOV system. These immobilized cells were perfused in a phosphate buffer carrier solution (capacity: 1 mmol L(-1), pH 7.4). Protons extruded from 10(5) to 10(6) cells were accumulated during a stopped flow period of 220 s followed by a pH measurement, detected by changes in absorbance of the pH indicator bonded to the microcarrier beads. Addition of metabolic inhibitors (sodium azide, oxamic acid) to the carrier buffer solution can induced an increase or decrease of the basal proton extrusion rate in a very reproducible manner. Comparison of the BIS-LOV technique to the Cytosensor microphysiometer and literature confirms the validity of this novel approach, highlighting its advantages and suggesting future improvements that will make the BIS-LOV a practical tool for routine ECARs measurement.  相似文献   
10.
We have used the single‐pulse shock tube technique with postshock GC/MS product analysis to investigate the mechanism and kinetics of the unimolecular decomposition of isopropanol, a potential biofuel, and of its reaction with H atoms at 918‐1212 K and 183‐484 kPa. Experiments employed dilute mixtures in argon of isopropanol, a radical scavenger, and, for H‐atom studies, two different thermal precursors of H. Without an added H source, isopropanol decomposes in our studies predominantly by molecular dehydration. Added H atoms significantly augment decomposition, mainly by abstraction of the tertiary and primary hydrogens, reactions that, respectively, lead to acetone and propene as stable organic products. Traces of acetaldehyde were observed in some experiments above ≈ 1100 K and establish branching limits for minor decomposition pathways. To quantitatively account for secondary chemistry and optimize rate constants of interest, we employed the method of uncertainty minimization using polynomial chaos expansions (MUM‐PCE) to carry out a unified analysis of all datasets using a chemical model–based originally on JetSurF 2.0. We find: k(isopropanol → propene + H2O) = 10(13.87 ± 0.69) exp(?(33 099 ± 979) K/ T) s?1 at 979‐1212 K and 286‐484 kPa, with a factor of two uncertainty (2σ), including systematic errors. For H atom reactions, optimization yields: k(H + isopropanol → H2 + p‐C3H6OH) = 10(6.25 ± 0.42) T2.54 exp(?(3993 ± 1028) K /T) cm3 mol?1 s?1 and k(H + isopropanol → H2 + t‐C3H6OH) = 10(5.83 ± 0.37) T2.40 exp(?(1507 ± 957) K /T) cm3 mol?1 s?1 at 918‐1142 K and 183‐323 kPa. We compare our measured rate constants with estimates used in current combustion models and discuss how hydrocarbon functionalization with an OH group affects H abstraction rates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号