首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   108篇
  免费   4篇
  国内免费   3篇
化学   81篇
力学   9篇
数学   13篇
物理学   12篇
  2023年   1篇
  2022年   1篇
  2021年   5篇
  2020年   4篇
  2019年   10篇
  2018年   5篇
  2017年   4篇
  2016年   3篇
  2015年   2篇
  2014年   4篇
  2013年   14篇
  2012年   10篇
  2011年   4篇
  2010年   10篇
  2009年   10篇
  2008年   5篇
  2007年   4篇
  2006年   7篇
  2005年   4篇
  2004年   4篇
  2002年   1篇
  2000年   1篇
  1984年   1篇
  1976年   1篇
排序方式: 共有115条查询结果,搜索用时 31 毫秒
1.
1-Carbomethoxy-1,2,3,4-tetrahydrocarbazole (1) and its 7-methoxy derivative (2) were oxidized at carbon felt anodes in acetonitrile containing 0.2 M LiClO4 and 2-17 M water at potentials on the rising portion of the primary oxidation peak to yield products formed by formal substitution of the C-1 H atom with hydroxide. The resulting 1-hydroxy-l-carbomethoxy-1,2,3,4-tetrahydrocarbazole and its 7-methoxy derivative were isolated in 44 and 22% yields, respectively, when sodium bicarbonate was used to control acidity of the medium. Structures were elucidated by NMR, IR, elemental analysis, and mass spectrometry. Voltammetry at carbon-paste and glassy carbon electrodes showed that the oxidations proceed by an ECE or DISPI pathway. The rate-determining step is the reaction of water with a cation radical electrochemically generated from 1 or 2, involving either proton abstraction or nucleophilic addition.  相似文献   
2.
Reducing gas contaminants by affordable and effective adsorbents is a major challenge in the 21st century. In the present study, thorium metal organic framework (Th‐MOF) nanostructures are introduced as highly efficient adsorbents. These compounds were manufactured via a novel route resulting from the development of microwave assisted reverse micelle (MARM) and ultrasound assisted reverse micelle (UARM) methods. The products were characterized utilizing XRD, SEM, TGA/DSC, BET, and FT‐IR analyses. Based on the results, the samples synthesized by MARM had uniform size distribution, high thermal stability, and significant surface area. Calculations using DFT/B3LYP indicated that the compounds have a tendency to the polymeric form, which could theoretically confirm the formation of Th‐MOF. Results of analysis of variance (ANOVA) showed that synthesis parameters played a critical role in the manufacturing of products with distinctive properties. Response surface methodology (RSM) predicted the possibility of creating Th‐MOF adsorbents with the surface area of 2579 m2/g, which was a considerable value in comparison with the properties of other adsorbents. Adsorption studies showed that, in the optimum conditions, the Th‐MOF products had high adsorption capacity for CO and CH4. It is believed that the synthesis protocol developed in the present study and the systematic studies conducted on the samples which lead to products with ideal adsorption properties.  相似文献   
3.
A novel heterogeneous nanocatalyst was established by supporting molybdenum (VI) on Zr6 nodes in the structure of the well‐known UiO‐66 metal–organic framework (MOF). The structure of the UiO‐66 before and after Mo (VI) immobilization was confirmed with XRD, DR‐FTIR and UV–vis spectroscopy, and the presence and amount of Mo (VI) was identified by X‐ray photoelectron spectroscopy and inductively coupled plasma atomic emission spectroscopy. TEM imaging confirmed the absence of Mo clusters on the MOF surface, while SEM confirmed that the appearance of the MOF has not changed upon immobilizing the Mo (VI) catalyst. BET adsorption measurements were used to confirm the porosity of the catalyst. The catalytic activity of this heterogeneous catalyst was investigated in oxidation of sulfides with H2O2 in acetonitrile and oxidative desulfurization of dibenzothiophene. Easy work up, convenient and steady reuse and high activity and selectivity are prominent properties of this new hybrid material.  相似文献   
4.
A simple, efficient and practical procedure for the Biginelli reaction using zinc oxid (ZnO) as a novel and reusable catalyst is described under solvent-free conditions in high yields. The use of this agent is characterized by remarkable reactivity, moderate costs, low toxicity and simple work up procedures.  相似文献   
5.
A procedure has been proposed for the separation and preconcentration of trace amounts of thallium. It is based on the adsorption of thallium ions onto organo nanoclay loaded with 1-(2-pyridylazo)-2-naphthol (PAN). Thallium ions were quantitatively retained on the column in the pH range of 3.5–6.0, whereas quantitative desorption occurs with 5.0?mL of 5% ascorbic acid and thallium was determined by flame atomic absorption spectrometry. Linearity was maintained between 0.66?ng?mL?1–15.0?µg?mL?1?in initial solution. Detection limit was 0.2?ng?mL?1?in initial solution and preconcentration factor was 150. Eight replicate determinations of 2.0?µg?mL?1 of thallium in final solution gave a relative standard deviation of ±1.48%. Various parameters have been studied, such as the effect of pH, breakthrough volume and interference of a large number of anions and cations and the proposed method was used to determine thallium ions in water and standard samples. Determination of thallium ions in standard sample showed that the proposed method has good accuracy.  相似文献   
6.
In this work, multiwalled carbon nanotubes were reacted with N‐[3‐(triet‐hoxysilyl)propyl]isonicotinamide to prepare pyridine‐functionalized carbon nanotubes. This novel sorbent was characterized by infrared spectroscopy, thermal and elemental analysis, and scanning electron microscopy. Functionalized carbon nanotubes were applied for the preconcentration and determination of copper ions using flame atomic absorption spectrometry. Various parameters such as sample pH, flow rate, eluent type and concentration, and its volume were optimized. Under optimal experimental conditions, the limit of detection, the relative standard deviation, and the recovery of the method were 0.65 ng/mL, 3.2% and 99.4%, respectively. After validating the method using standard reference materials, the new sorbent was applied for the extraction and determination of trace copper(II) ions in fruit samples.  相似文献   
7.
In this work, we present an optical transit DEP flow cytometer for parallel single-cell analysis. Each cell's dielectric property is inferred from velocity perturbations due to DEP actuation in a microfluidic channel. Dual LED sources facilitate velocity measurement by producing two transit shadows for each cell passing through the channel. These shadows are detected using a 256-pixel linear optical array detector. Massively parallel analysis is possible as each pixel of the detector can independently analyze the passing cells. A wide channel (∼18 mm) was employed to carry many particles simultaneously, and the system was capable of detecting the velocity of over 200 cells simultaneously. We have achieved analysis rates for 10 µm diameter polystyrene spheres response exceeding 250 per second. With appropriate calibration, this DEP cytometer can quantitatively measure the dielectric response. The dielectric response (Clausius–Mossotti factor) of viable CHO cells was measured over the frequency range of 100 kHz to 6 MHz, and the obtained response matches the previously measured values by our group. The DEP cytometer uses simple modular components to achieve high throughput label-free single-cell dielectric analysis and can begin analyzing particles within 10 s after starting to pump the sample into the channel.  相似文献   
8.
9.
The viscosity of imidazolium-based ionic liquids (ILs) saturated with gaseous, liquid and supercritical carbon dioxide (CO2) was measured by a high-pressure viscometer at three different temperatures (25, 50, and 70 °C). The high-pressure viscosity of 1-ethyl-3-methylimidazolium ([EMIm]), 1-n-hexyl-3-methylimidazolium ([HMIm]), and 1-n-decyl-3-methylimidazolium ([DMIm]) cations with a common anion, bis(trifluoromethylsulfonyl)amide ([Tf2N]), saturated with CO2 was measured up to a maximum of 287 bar. As CO2 pressure is increased the viscosity of the IL mixture dramatically decreases. While, the ambient pressure viscosity of 1-alkyl-3-methyl-imidazolium [Tf2N] ILs increases significantly with increasing chain length, the viscosity of all the CO2-saturated ILs becomes very similar at high CO2 pressures. From previous vapor–liquid equilibrium data, the viscosity with concentration was determined and found to be the primary factor to describe the fractional viscosity reduction. Several predictive and correlative methods were investigated for the mixture viscosity given pure component properties and include arithmetic mixing rules, the Irving (Predictive Arrhenius) model, Grunberg equation, etc. The modified Grunberg model with one adjustable parameter provided an adequate fit to the data.  相似文献   
10.

Abstract  

The electronic structure of a boron nitride nanocone with 240° disclination, and some properties that derive from this structure, were studied by density-functional theory calculations. In the considered model there are only hexagonal rings, with the apex and mouth of the nanocone saturated by hydrogen atoms. The model was optimized, and then the nuclear quadrupole resonance parameters were calculated at the sites of 11B and 14N nuclei. The results revealed that the nuclei in the boron nitride nanocone are divided into layers with similar electronic properties. The nuclei at the apex and mouth are very important for the electronic behavior of the nanocone, with 11B playing the major role.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号