首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   0篇
  国内免费   5篇
化学   5篇
  2020年   1篇
  2018年   4篇
排序方式: 共有5条查询结果,搜索用时 125 毫秒
1
1.
向锐  童成  王尧  彭立山  聂瑶  李莉  黄寻  魏子栋 《催化学报》2018,39(11):1736-1745
高效稳定并可同时催化析氧反应(OER)和析氢反应(HER)的非贵金属催化剂对于实现廉价水分解电解槽的商业化十分重要.虽然众多研究表明FeNi(OH)x是一种极具潜力的催化剂,但是在基础研究与更有实用前景的电极之间仍有许多空白亟待填补.比如,基础研究多基于薄膜电极,其催化剂内部导电性的影响通常可以忽略.而基于实用化的电极则需要负载较厚的催化剂膜以获得更多的活性位,与此同时,其催化剂内部导电性的不利影响将会增大.此外,物质传递方面也会出现类似的情况.因此,一些在基础研究中显示出高本征活性的催化剂,在更加接近实际应用的体系下难以表现出预期的高活性.对于这一问题,目前鲜有相关的研究报道.基于上述分析,本文报道了一种经济且环保的方法,以制备珊瑚状的FeNi(OH)x/Ni催化剂.在碱性条件下,该催化剂具有同时催化OER和HER,从而实现全水分解的能力.在催化剂的制备过程中,具有高本征活性的FeNi(OH)x纳米片借助Fe(NO3)3对Ni温和的腐蚀过程,被原位负载到珊瑚状镍骨架上.这些纳米片与电沉积制备的珊瑚镍骨架以及3D泡沫镍基底一起构成了一体化的析气电极.这样的电极结构有助于暴露活性位、电解质快速传递和气体产物的迅速释放.此外,与珊瑚状金属镍骨架的复合也有利于减轻较厚的催化剂薄膜所带来的导电性降低的负面影响.在1.0mol L-1 KOH溶液中,以FeNi(OH)x/Ni同时作为阳极和阴极而构建的对称电解槽表现出了优异的催化活性,只需要施加1.52 V的槽压即获得10 mA cm-2的催化电流密度.其活性甚至优于当前最佳的由贵金属催化剂RuO2和Pt/C构建的非对称电解槽所表现出来的活性(10 mA cm-2的槽压为1.55 V).本文提供了一种简便易行且十分可靠的制备更加实用、具有潜力且可负担的水分解装置的策略.  相似文献   
2.
Fe、N掺杂的碳材料(FeNC)是最有希望取代贵金属用作氧还原反应的催化剂之一.然而,传统FeNC材料制备过程中所采用的高温碳化-蚀刻步骤会造成相邻Fe原子随温度升高而逐渐团聚,形成较大尺寸金属铁单质、铁氧化物或碳化物的聚集颗粒,并在后续酸刻蚀处理中被移出,铁元素损失严重,无法形成有效活性位点.同时高温下含N小分子物质也容易分解并从产物中逸出,导致N元素掺杂量较低.直接焙烧还加重了碳的团聚,造成材料内部孔道有限,比表面积低,活性位难以暴露于三相界面.因此,焙烧处理过程中如何形成Fe、N元素的高含量、均匀分散掺杂,同时构建大量内部联通孔道,是形成高活性Fe NC催化剂的关键.本文采用ZnCl2辅助焙烧方法制备出具有高活性位点密度和大材料孔隙率的Fe NC催化剂;通过TEM、N2吸附和XPS等一系列物理手段对所制备样品进行了形貌、结构及组成表征,提出了ZnCl2辅助催化剂合成机理;结合CV和LSV等电化学测试结果详细探讨了ZnCl2辅助方法对催化剂结构和催化性能的影响.普通共价盐ZnCl2在283–732°C的较宽温度范围内呈现熔融态,同卟啉铁(Fe Pc)碳化温度区间恰好匹配,可以辅助Fe NC催化剂进行元素掺杂和多级孔结构的构建.首先,在熔融状态下,过量的ZnCl2形成分支结构,阻止相邻Fe物种直接接触和聚集,有利于形成高度分散的FeNx活性位点.其次,熔融的ZnCl2像盖子一样包封住催化剂前驱体,避免了挥发性含N小分子的快速逸出,使得N原子在高温下有可能重新在碳骨架中形成掺杂,有助于在材料中保留更高比例的活性N物质.在ZnCl2的辅助下碳化Fe Pc得到的Sphere-FeNC样品具有高达4.37%的总N含量,并且Fe-Nx含量也高达0.71%,分别是不使用ZnCl2制备的对比催化剂FeNC-none的3.2和13倍.同时, ZnCl2辅助合成方法将Fe NC材料的比表面积增加4.5倍,总孔体积增加7倍.三电极氧还原反应性能测试表明, Sphere-Fe NC在碱性和酸性介质的初始电位分别为1.080和1.015 V(vsRHE),半波电位分别为0.906和0.799 V (vs RHE),活性优异.以Sphere-FeNC为阴极催化剂组装的单电池功率达到0.72 W mg–1,高于已报道的Fe NC和Pt/C催化剂.因此, ZnCl2辅助焙烧碳化的方法可以作为一种普适手段用于构建具有高密度活性元素掺杂和大量微孔介孔分布的碳基催化材料,并应用于各类催化反应.  相似文献   
3.
随着市场竞争的加剧,以产品需求为导向精确定制符合需求的化学品成为化学工程研究发展的探索新方向。电解水制氢是生产高纯氢气并转换储存大规模可再生能源的一种有效方法。为实现高效的电-氢气转换效率,高性能的电解水析氢析氧电极是必不可少的。电解水电极材料具有复杂的化学组成及多层次的结构,其中电极表面催化材料的物理化学性质和形貌结构是决定电解水性能的最主要因素。本文结合本课题组在电解水催化方面的研究工作,综述了近几年国内外电解水电极催化材料的最新研究进展,阐述了电解水电极催化材料以反应机理为导向的催化剂设计理论、以产品性能为导向的催化剂设计方法学(包括纳米结构构筑、晶面调控、载体复合、晶相调节、杂原子掺杂、合金化和聚合物表面修饰)及应用,针对化学产品工程的发展与需要,介绍了电解水电极催化材料跨越分子尺度、微纳结构及合成应用的产品设计和产品工程研究的关键科学问题和发展方向。  相似文献   
4.
高效稳定并可同时催化析氧反应(OER)和析氢反应(HER)的非贵金属催化剂对于实现廉价水分解电解槽的商业化十分重要.虽然众多研究表明FeNi(OH)_x是一种极具潜力的催化剂,但是在基础研究与更有实用前景的电极之间仍有许多空白亟待填补.比如,基础研究多基于薄膜电极,其催化剂内部导电性的影响通常可以忽略.而基于实用化的电极则需要负载较厚的催化剂膜以获得更多的活性位,与此同时,其催化剂内部导电性的不利影响将会增大.此外,物质传递方面也会出现类似的情况.因此,一些在基础研究中显示出高本征活性的催化剂,在更加接近实际应用的体系下难以表现出预期的高活性.对于这一问题,目前鲜有相关的研究报道.基于上述分析,本文报道了一种经济且环保的方法,以制备珊瑚状的FeNi(OH)_x/Ni催化剂.在碱性条件下,该催化剂具有同时催化OER和HER,从而实现全水分解的能力.在催化剂的制备过程中,具有高本征活性的FeNi(OH)_x纳米片借助Fe(NO3_)_3对Ni温和的腐蚀过程,被原位负载到珊瑚状镍骨架上.这些纳米片与电沉积制备的珊瑚镍骨架以及3D泡沫镍基底一起构成了一体化的析气电极.这样的电极结构有助于暴露活性位、电解质快速传递和气体产物的迅速释放.此外,与珊瑚状金属镍骨架的复合也有利于减轻较厚的催化剂薄膜所带来的导电性降低的负面影响.在1.0 mol L~(-1) KOH溶液中,以FeNi(OH)_x/Ni同时作为阳极和阴极而构建的对称电解槽表现出了优异的催化活性,只需要施加1.52 V的槽压即获得10 mA cm~(-2)的催化电流密度.其活性甚至优于当前最佳的由贵金属催化剂RuO_2和Pt/C构建的非对称电解槽所表现出来的活性(10mA cm~(-2的槽压为1.55 V).本文提供了一种简便易行且十分可靠的制备更加实用、具有潜力且可负担的水分解装置的策略  相似文献   
5.
对化石能源的依赖所造成的环境污染和能源危机在全球引起了广泛的关注.氢能由于其高能量密度、低分子质量以及清洁无污染的优点,被认为是人类根本性解决能源与环境等全球性问题的理想替代能源.电解水是生产高纯度氢的重要方法,是现代清洁能源技术的重要组成部分.水电解由阴极析氢(HER)和阳极析氧(OER)两个半反应构成.对于HER反应,其反应是基于二电子转移过程,反应过程相对容易进行.相比于HER反应,OER反应涉及四电子转移及氧-氧键形成,其反应动力学缓慢,是影响水电解效率的主要原因.因此,为了提高电解水制氢的能量转化效率,发展OER电催化剂成为水电解制氢技术的关键.在过去的十余年间,硫化物、硒化物、磷化物、硼化物等非贵金属基OER电催化剂被大量地研究及报道并取得了长足发展.在这些催化剂中,金属磷化物和硫化物不仅具有成本优势,而且在析氧过电位、耐久性方面正趋接近甚至超越RuO_2和IrO_2等贵金属催化剂,颇具应用潜力.本文总结磷化物和硫化物作为OER电催化剂的研究进展,重点介绍了磷化物和硫化物性能提升策略及其在OER过程中催化反应活性位的变化.本文首先介绍了电解水析氧反应在不同电解质中的反应机理,讨论了析氧反应在动力学和热力学过程的主要障碍.通过对大量文献的归纳,本文分别综述了磷化物和硫化物的化学性质、合成方法和催化性能,介绍了近年来磷化物和硫化物的重要研究进展.通过分析催化剂导电性、质子传输、活性面积、界面化学等因素对催化析氧反应的影响,总结了磷化物和硫化物电催化OER性能提升的策略.由于磷化物和硫化物在OER强氧化条件下,电催化剂表面的成分、物相及结构均会发生显著变化,进而催化反应活性位也会发生相应改变.本文综述了磷化物和硫化物在OER反应过程前后表面组分的变化,探讨了磷化物和硫化物作为OER电催化剂的活性组分,为进一步提高磷化物和硫化物的电催化析氧反应性能提供了崭新的思路.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号