首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
  国内免费   4篇
化学   4篇
物理学   6篇
  2021年   1篇
  2019年   1篇
  2018年   4篇
  2017年   1篇
  2016年   1篇
  2013年   1篇
  2010年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
以MoO42-部分取代Li3Fe2(PO43中的PO43-,研究表明:加入的MoO42-离子主要以固溶形式存在于Li3Fe2(PO43中,起到了显著改善其电化学性能的作用。其中,MoO42-掺杂浓度为0.3的样品表现出最佳的电化学性能,其在0.5C倍率下的首次放电容量为113.7 mAh·g-1,这一数值比未掺杂的提高了20.7%;经过60次循环充放电,容量保持率为94%。将放电倍率从0.5C逐步增大至5C,再降至初始的0.5C,并在每个倍率循环10次,这一材料的最终放电容量可达首次0.5C的95%。这些优异的性能应归因于MoO42-掺杂使材料的氧化还原能力增强,氧化还原电对的电势差减小,电池内部的电荷转移电阻减小,以及Li+扩散系数增加。  相似文献   
2.
采用溶胶-凝胶法用SO42-部分代替Li3Fe2(PO4)3中的PO43-阴离子制得Li3-xFe2(PO4)3-x(SO4)x(x=00.90)正极材料, 通过X射线衍射、 充放电技术、 循环伏安特性测试及电化学阻抗谱表征了掺杂材料的相组成及电化学性能. 结果表明, SO42-主要以固溶形式存在于Li3Fe2(PO4)3中, 产物中还伴有少量Fe2O3第二相析出. SO42-掺杂使Li3Fe2(PO4)3的放电容量呈抛物线形规律变化, 并在掺杂浓度x=0.60时达到最佳值, 该样品在0.5C倍率下的首次放电容量为111.59 mA·h/g, 比未掺杂的样品提高了18.4%; 60次循环充放电后的容量保持率为96%; 将该样品的放电倍率由0.5C逐渐提高至5C, 再降至0.5C, 并在每个倍率下循环10次, 材料的最终放电容量仍能达到首次放电容量的97%. 导致这些变化的原因是SO42-掺杂使材料的氧化还原性能增强, 电池内阻减小, 极化程度降低及Li+扩散系数增大.  相似文献   
3.
荒漠植物长势、变化、演替是反映荒漠地区生境状况的重要指标。目前荒漠植物监测与光谱研究多基于定时采样数据,波谱时序动态研究相对薄弱。荒漠植物光谱因受时间尺度影响,常引起辨识误差。将荒漠植物中最具代表性的灌木--柽柳、白刺、梭梭作为样本,旨在揭示三种荒漠植物光谱生长期变化规律及种间动态分异特征,为荒漠植被空间遥感辨析奠定基础。实验选取旺盛植株采集生长期内(5月-10月份)光谱数据,对不同月份植物光谱曲线分析比较并剖析机理,得出荒漠植物生长期光谱特征变化规律及其物候现象对应波谱表现。结论指出:(1)三种荒漠植物反射率曲线总体特征均符合绿色植被波谱规律,可观察到较明显的12峰谷分布,红边斜率与面积从大到小分别为:梭梭、柽柳、白刺。其光谱曲线峰谷幅度值相对较小,且变化较快,红边参数表现活跃期分别为柽柳8月、白刺10月、梭梭9月。(2)荒漠植物的光谱变化与植物本身物候特征、气候变化植物响应密切相关。光谱特征在可见光波段与营养期、花期、落叶期有一定响应关系;近红外波段与结实期、休眠期、降雨情况相关;短波红外波段与营养期、落叶期、降雨状况呈现关联性。(3)7月份三种植物的生长状况差异光谱曲线表现为:衰败植株地物光谱反射率可见光、短波红外波段呈高反射,近红外波段反射减弱,趋近于土壤光谱反射率曲线。  相似文献   
4.
甘肃河西走廊土地荒漠化严重影响了当地居民的生产生活环境,高光谱遥感技术是荒漠化土地退化程度、土地类型识别、遥感反演等的重要研究手段,以河西地区荒漠化土地为研究对象,分析其光谱特征与植被退化程度、植物类型、季节变化等的关系,探讨河西地区荒漠化土地的光谱特征。主要结果有:(1)当植被覆盖度小于20%,同一类型不同退化阶段的植被光谱对沙地光谱的影响很小,沙地光谱反射率与裸地接近,尤其当植被盖度小于10%时,沙地与裸地的光谱曲线几乎重合,仅从植被景观很难反映出土地的沙化程度。(2)不同的植被类型对沙地光谱的反射率有一定的影响,以白刺为建群种的沙地光谱反射率较高,其次为梭梭沙地,多枝柽柳沙地相对较低,植被不同演替阶段下指示性植物的沙地光谱可以反映土地的沙化过程。(3)在植物生长季,沙地光谱反射率受土壤、植物含水量及植物物候期的影响,8月-10月高于其他月份,7月最低,沙地光谱波形曲线的季节变化规律可以反映出沙地土壤含水量的变化。研究结果对荒漠化土地遥感监测中土地沙化程度判定、季节信息提取、植被覆盖度估算等提供研究基础。  相似文献   
5.
目前大学物理实验教学过程中,学生们普遍反映教学内容与较为前沿的科学技术关联性不强、未能完全体现最新的研究成果与实验方法,导致本科阶段参与创新项目以及继续深造时,知识储备不足、不能学以致用。针对该问题,将创新慕课引入大学物理实验教学中,利用慕课多样、灵活的特性对与实验教学内容相关的原理进行深入剖析,展现多种技术手段与实现方法,尤其是相关原理与技术在已知及预期应用领域进行知识扩展,此方法充分拓宽学生们知识面、提升对创新和设计实验的兴趣、进一步提高大学物理教学质量。  相似文献   
6.
张勃  祁悦  高赫男  包建民 《色谱》2010,28(12):1196-1199
开发了一种简便快速的固相萃取膜(SPE disk)技术,实现了对500 mL自来水中微量丙烯酰胺的富集,采用高效液相色谱法(HPLC)完成其定性和定量测定。比较不同填料的吸附情况,选择活性炭作为丙烯酰胺的最佳吸附剂。考察了洗脱剂种类、洗脱剂体积、洗脱速率和穿透体积等条件对萃取结果的影响,优化了色谱分离条件。经膜萃取过的丙烯酰胺在0.05~0.5 mg/L质量浓度范围内,其峰面积与质量浓度的线性关系良好,相关系数为0.998,检出限为20 ng/L。该方法对不同体积、不同浓度的丙烯酰胺溶液的回收率为94.12%~100.2%,相对标准偏差为2.09%~4.51%(n=3),自来水样品的加标回收率为79.96%。该方法操作简单、快速、灵敏度高,适合对水样中丙烯酰胺的测定。  相似文献   
7.
以MoO_4~(2-)部分取代Li3Fe2(PO4)3中的PO_4~(3-),研究表明:加入的MoO_4~(2-)离子主要以固溶形式存在于Li3Fe2(PO4)3中,起到了显著改善其电化学性能的作用。其中,MoO_4~(2-)掺杂浓度为0.3的样品表现出最佳的电化学性能,其在0.5C倍率下的首次放电容量为113.7 m Ah·g~(-1),这一数值比未掺杂的提高了20.7%;经过60次循环充放电,容量保持率为94%。将放电倍率从0.5C逐步增大至5C,再降至初始的0.5C,并在每个倍率循环10次,这一材料的最终放电容量可达首次0.5C的95%。这些优异的性能应归因于MoO_4~(2-)掺杂使材料的氧化还原能力增强,氧化还原电对的电势差减小,电池内部的电荷转移电阻减小,以及Li+扩散系数增加。  相似文献   
8.
为实现对汇聚光源聚焦位置快速准确测量,搭建了基于光斑调制的汇聚光源焦距测量系统,通过精密调节待测光源在系统中前后位置,将一定距离处光屏上接收到的光斑调整到对照尺寸,读取位置数据,得到光源的系统测量数值.根据成像理论,推导出实验理论误差公式,依据系统初始参量,计算生成数据处理界面,将测量数值输入系统,直接输出焦距准确值.此系统可用于对LD光源是否合格进行快速筛选,及对微小差别光源焦距进行准确测量,焦距值精确到0.05mm.整个系统结构简单,仅需对光斑大小进行简单调整,专业技术要求低,测量数据误差小,成本低,能实现快速准确测量.  相似文献   
9.
采用基于密度泛函理论(DFT)的第一性原理计算方法,计算了多种尺寸的石墨烯和六方氮化硼纳米片的性质,系统研究了其中的量子尺寸效应.研究的最大尺寸纳米片的直径约为5.5 nm,包含816个原子.对纳米片及其边缘的几何结构、电子结构、磁性性质以及电子分布进行了深入探讨,发现石墨烯和六方氮化硼纳米片最外层原子有由锯齿形向圆形变化的趋势,使得纳米片最外层更加平滑.随着纳米片尺寸的增加,能级由分立逐渐变得连续,纳米片由孤立分子态逐渐变得接近无限的晶体;禁带宽度总体有下降的趋势,符合量子尺寸效应.纳米片存在明显的磁性,磁矩主要集中在最外层原子上,且在相对平滑的地方容易出现磁性,相对弯曲的地方不易出现磁性.当增加体系的电子数时,增加的电子主要分布在最外层,使得纳米片整体磁性呈递减的趋势;当减少体系的电子数时,减少的电子的分布逐渐由最外层向内收缩,体系的总磁矩略有增加.研究结果对石墨烯和六方氮化硼纳米片的应用有参考价值.  相似文献   
10.
为了提高对金属腐蚀过程的监测精度,缩短腐蚀过程的实验时间,本文利用所设计的光纤马赫曾德干涉仪(MZ)的高灵敏度,对0.5wt%的NaCl溶液在腐蚀不锈钢材料过程中等效折射率的变化进行分析,得到2 mL 0.5wt%的NaCl溶液,检测到条纹移动的最快速率为-9.32×10-2 nm/s,产生的光谱峰值变化为-3.93×10-2 dB/s,腐蚀速率呈现先增加后减小的趋势.由于采用电化学方法加速腐蚀过程,可在一分钟内对腐蚀过程进行监测,并可推广至其他金属材料.本实验可以作为金属线胀系数实验的延伸实验或创新设计实验.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号