首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15929篇
  免费   1394篇
  国内免费   1096篇
化学   6698篇
晶体学   255篇
力学   210篇
综合类   53篇
数学   151篇
物理学   11052篇
  2024年   10篇
  2023年   126篇
  2022年   211篇
  2021年   269篇
  2020年   320篇
  2019年   295篇
  2018年   333篇
  2017年   458篇
  2016年   549篇
  2015年   525篇
  2014年   1046篇
  2013年   1138篇
  2012年   948篇
  2011年   1236篇
  2010年   881篇
  2009年   1088篇
  2008年   1028篇
  2007年   1237篇
  2006年   926篇
  2005年   789篇
  2004年   683篇
  2003年   612篇
  2002年   536篇
  2001年   461篇
  2000年   354篇
  1999年   397篇
  1998年   345篇
  1997年   265篇
  1996年   239篇
  1995年   179篇
  1994年   160篇
  1993年   147篇
  1992年   111篇
  1991年   111篇
  1990年   79篇
  1989年   65篇
  1988年   43篇
  1987年   41篇
  1986年   29篇
  1985年   18篇
  1984年   33篇
  1983年   10篇
  1982年   15篇
  1981年   10篇
  1980年   13篇
  1979年   9篇
  1978年   8篇
  1977年   7篇
  1974年   6篇
  1973年   10篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
The high-entropy materials have raised much attention in recent years due to their extraordinary performances in mechanical, catalysis, energy storage fields. Herein, a new type of high-entropy hydroxides (e.g., NiFeCoMnAl(OH)x) that are amorphous and capable of broad solar absorption is reported. A facile one-pot co-precipitation method is employed to synthesize these amorphous high-entropy hydroxides (a-HEHOs) under ambient conditions. The a-HEHOs thus obtained display widely tunable bandgap (e.g., from 2.6 to 1.1 eV) due to their high-entropy and amorphous characteristics, enabling efficient light absorbance and photothermal conversion in the solar regime. Further solar water evaporation measurements show that the a-HEHOs delivered a considerable energy conversion efficiency of 55%, comparable to black titanium oxides that are synthesized using more complex and expensive methods.  相似文献   
2.
An in situ generated oxidation species of nickel quinolinylpropioamide intermediate was produced. Characterization by X-ray absorption near edge structure (XANES) and EPR provides complementary insights into this oxidized nickel species. With aliphatic amides and isocyanides as substrates, a nickel-catalyzed facile synthesis of structurally diverse five-membered lactams could be achieved.  相似文献   
3.
We proposed an electro-optic modulator with two-bus one-ring (TBOR) structure to improve the extinction ratio and reduce insert loss. It has a dual output compared with one-bus one-ring structure. In addition, double-layer graphene makes it possible for the modulation in the visible to mid-infrared wavelength range. It shows that this new electro-optic modulator can present two switching states well with low insertion loss, high absorption and high extinction ratio. At λ=1550 nm, when the switching states are based on the chemical potential, μc=0.38 eV and μc=0.4 eV, the insertion losses of both output ports are less than 2 dB, the absorption of the output port coupled via a micro-ring reaches 45 dB and the extinction ratio reaches 14 dB. When the refractive index of the dielectric material is 4.2, the applied voltage will be less than 1.2 V, thus can be used in low-voltage CMOS technology.  相似文献   
4.
5.
In organic photovoltaics, porphyrins (PPs) are among the most promising compounds owing to their large absorption cross-section, wide spectral range, and stability. Nevertheless, a precise adjustment of absorption band positions to reach a full coverage of the so-called green gap has not been achieved yet. We demonstrate that a tuning of the PP Q- and Soret bands can be carried out by using a computational approach for which substitution patterns are optimized in silico. The most promising candidate structures were then synthesized. The experimental UV/Vis data for the solvated compounds were in excellent agreement with the theoretical predictions. By attaching further functionalities, which allow the use of PP chromophores as linkers for the assembly of metal-organic frameworks (MOFs), we were able to exploit packing effects resulting in pronounced redshifts, which allowed further optimization of the photophysical properties of PP assemblies. Finally, we use a layer-by-layer method to assemble the PP linkers into surface-mounted MOFs (SURMOFs), thus obtaining high optical quality, homogeneous and crystalline multilayer films. Experimental results are in full accord with the calculations, demonstrating the huge potential of computational screening methods in tailoring MOF and SURMOF photophysical properties.  相似文献   
6.
The photovoltaic performance of quantum-dot solar cells strongly depends on the charge-carrier relaxation and recombination processes, which need to be modulated in a favorable way to obtain maximum efficiency. Recently, significant efforts have been devoted to investigate the carrier dynamics of nanocrystal sensitizers, both in solution and deposited on TiO2 photoanodes, with the aim to correlate the excitonics with solar-energy conversion efficiency. This Minireview summarizes some proof of the concepts that efficiency can be directly correlated to the exciton dynamics of quantum-dot solar cells. The presented findings are based on CdSeS alloy, CdSe/CdS core/shell, Au/CdSe nanohybrids, and Mn-doped CdZnSSe nanocrystals, where the favourable excitonic processes are optimized to enhance the efficiency. Future prospects and limitations are addressed as well.  相似文献   
7.
8.
The hexapyrrole-α,ω-dicarbaldehydes 1 a and 1 b were metallated with CuII, NiII, and PdII to give bimetallic complexes where a pair of 3 N+O four-coordinate metal planes are helically distorted and the central 2,2′-bipyrrole subunit adopts a cis or trans conformation. X-ray crystallographic analysis of the bisCu complex revealed a closed form with a cis-2,2′-bipyrrole subunit and an open form with a trans-2,2′-bipyrrole subunit. The bisPd complexes took a closed form both in the solid state and in solution. They are regarded as single helicates of two turns and the energy barrier for the interchange between an M helix and a P helix was remarkably influenced by the bulky 3,3′-substituent of the central 2,2′-bipyrrole subunit. Although the bisNi complexes adopt a closed form in the solid state, they exist as a homohelical open C2-symmetric form or a heterohelical open Ci-symmetric form in solution. A theoretical study suggested that the closed form of 1 a Pd was stabilized by the Pd–Pd interaction. Compound 1 a Pd was reversibly oxidized by one electron at 0.14 V versus ferrocene/ferrocenium (Fc/Fc+) and this oxidized species showed Vis/NIR absorption bands at λ=767 and 1408 nm.  相似文献   
9.
为探索油-气-水三相流持气率测量难题,该文开展了脉冲透射式超声传感器持气率测量动态实验研究。首先,利用超声传感器与光纤传感器组合,测取了油-气-水三相流中段塞流、混状流、泡状流的响应信号;其次,提取了超声脉冲信号的最大值序列来反映不同流型时超声传感器响应特性,同时,借助双头光纤传感器与相关测速法,计算得到了流体中气泡弦长序列;最后,结合流型与泡径信息,利用超声传感器测量了不同流型下持气率,并分析了不同流型持气率预测的误差来源,为其他油-气-水三相流持气率测量传感器设计提供了借鉴。  相似文献   
10.
ABSTRACT

Using the two-dimensional (2D) diagonalisation method, the impurity-related electronic states and optical response in a 2D quantum dot with Gaussian confinement potential under nonresonant intense laser field are investigated. The effects of a hydrogenic impurity on the energy spectrum and binding energy of the electron and also intersubband optical absorption are calculated. The obtained numerical results show that the degeneracies of the excited electron states are broken and the absorption spectrum exhibits a redshift with the values of the laser field. The findings indicate a new degree of freedom to tune the performance of novel optoelectronic devices, based on the quantum dots and to control their specific properties by means of intense laser field and hydrogenic donor impurity. Using the same Gaussian confinement model, the electronic properties of a confined electron in the region of a spherical quantum dot are studied under the combined effects of on-centre donor impurity and a linearly polarised intense laser radiation. The three-dimensional problem is used to theoretically model, with very good agreement, some experimental findings reported in the literature related to the photoluminescence peak energy transition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号