首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43528篇
  免费   5476篇
  国内免费   3176篇
化学   25755篇
晶体学   384篇
力学   757篇
综合类   704篇
数学   6820篇
物理学   17760篇
  2023年   392篇
  2022年   674篇
  2021年   1537篇
  2020年   1291篇
  2019年   1223篇
  2018年   949篇
  2017年   1041篇
  2016年   1373篇
  2015年   1467篇
  2014年   1852篇
  2013年   3287篇
  2012年   2159篇
  2011年   2490篇
  2010年   2173篇
  2009年   2682篇
  2008年   2736篇
  2007年   3056篇
  2006年   2525篇
  2005年   1724篇
  2004年   1480篇
  2003年   1522篇
  2002年   1388篇
  2001年   1354篇
  2000年   1020篇
  1999年   786篇
  1998年   777篇
  1997年   646篇
  1996年   660篇
  1995年   605篇
  1994年   592篇
  1993年   606篇
  1992年   564篇
  1991年   380篇
  1990年   336篇
  1989年   261篇
  1988年   290篇
  1987年   235篇
  1986年   246篇
  1985年   344篇
  1984年   266篇
  1983年   146篇
  1982年   303篇
  1981年   490篇
  1980年   444篇
  1979年   468篇
  1978年   376篇
  1977年   281篇
  1976年   237篇
  1974年   77篇
  1973年   157篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
In this article, a way to employ the diffusion approximation to model interplay between TCP and UDP flows is presented. In order to control traffic congestion, an environment of IP routers applying AQM (Active Queue Management) algorithms has been introduced. Furthermore, the impact of the fractional controller PIγ and its parameters on the transport protocols is investigated. The controller has been elaborated in accordance with the control theory. The TCP and UDP flows are transmitted simultaneously and are mutually independent. Only the TCP is controlled by the AQM algorithm. Our diffusion model allows a single TCP or UDP flow to start or end at any time, which distinguishes it from those previously described in the literature.  相似文献   
2.
《中国物理 B》2021,30(5):56501-056501
Thermal expansion control is always an obstructive factor and challenging in high precision engineering field. Here,the negative thermal expansion of Nb F_3 and Nb OF_2 was predicted by first-principles calculation with density functional theory and the quasi-harmonic approximation(QHA). We studied the total charge density, thermal vibration, and lattice dynamic to investigate the thermal expansion mechanism. We found that the presence of O induced the relatively strong covalent bond in Nb OF_2, thus weakening the transverse vibration of F and O in Nb OF_2, compared with the case of Nb F_3.In this study, we proposed a way to tailor negative thermal expansion of metal fluorides by introducing the oxygen atoms.The present work not only predicts two NTE compounds, but also provides an insight on thermal expansion control by designing chemical bond type.  相似文献   
3.
We propose a conjecture on the relative twist formula of l-adic sheaves, which can be viewed as a generalization of Kato—Saito's conjecture. We verify this conjecture under some transversal assumptions. We also define a relative cohomological characteristic class and prove that its formation is compatible with proper push-forward. A conjectural relation is also given between the relative twist formula and the relative cohomological characteristic class.  相似文献   
4.
Near-infrared(NIR) fluorescent materials with high photoluminescent quantum yields(PLQYs) have wide application prospects. Therefore, we design and synthesize a D-A type NIR organic molecule, TPATHCNE, in which triphenylamine and thiophene are utilized as the donors and fumaronitrile is applied as the acceptor. We systematically investigate its molecular structure and photophysical property. TPATHCNE shows high Tgof 110℃ and Td of 385℃ and displays an aggregation-induced emission(AIE) property. A narrow optical bandgap of 1.65 eV is obtained. The non-doped film of TPATHCNE exhibits a high PLQY of 40.3% with an emission peak at 732 nm, which is among the best values of NIR emitters. When TPATHCNE is applied in organic light-emitting diode(OLED), the electroluminescent peak is located at 716 nm with a maximum external quantum efficiency of 0.83%. With the potential in cell imaging, the polystyrene maleic anhydride(PMSA) modified TPATHCNE nanoparticles(NPs) emit strong fluorescence when labeling HeLa cancer cells, suggesting that TPATHCNE can be used as a fluorescent carrier for specific staining or drug delivery for cellular imaging. TPATHCNE NPs fabricated by bovine serum protein(BSA) are cultivated with mononuclear yeast cells, and the intense intracellular red fluorescence indicates that it can be adopted as a specific stain for imaging.  相似文献   
5.
Continuous administration of most chemotherapeutic drugs can induce different types of side effects. There has been growing interest in exploring an alternative approach to synthesizing compounds that are most effective and have fewer side effects. We synthesized 29H,31H-Phthalocyanine, and Chloro (29H,31H- phthalocyaninato) aluminum at low temperatures using lithium in the present study with diisopropylamide as the nucleophile. The physical characteristics of 29H,31H-Phthalocyanine, and Chloro (29H,31H- phthalocyaninato) aluminum were confirmed by FT-IR method, XRD, SEM, and the impact of these compounds on human colorectal carcinoma (HCT-116) and human cervical cells (HeLa) was examined. Treatment with 29H,31H-Phthalocyanine significantly decreased cancer cell growth and proliferation, as determined by MTT and DAPI staining analysis. In contrast, Chloro (29H,31H- phthalocyaninato) aluminum treatment did not show any inhibitory action on colon or cervical cancer cells. We also calculated the inhibitory concentration (IC50) of 29H,31H-Phthalocyanine, which was 30 µg/ml (HCT-116) and 33 µg/ml (HeLa cells). The antibacterial effectiveness of 29H,31H-Phthalocyanine, and chloro (29H,31H- phthalocyaninato) aluminum was studied using Enterococcus faecalis (E. faecalis). The CFU (colony frequency unit) assay confirmed significant activity against the test bacterium after treatment with 29H,31H-Phthalocyanine. However, no activity was seen upon treatment with chloro (29H,31H- phthalocyaninato) aluminum against E. faecalis.  相似文献   
6.
During the past two decades, single-atom-centered medium-sized germanium clusters [M@Gen] (M=transition metals, n>12) have been extensively explored, both from theoretical perspectives and experimental gas-phase syntheses. However, the actual structural arrangements of the Ge13 and Ge14 endohedral cages are still ambiguous and have long remained an unresolved problem for experimental implementation. In this work, we successfully synthesize 13-/14-vertex Ge clusters [Nb@Ge13]3− ( 1 ) and [Nb@Ge14]3− ( 2 ), which are structurally characterized and exhibit unprecedented topologies, neither classical deltahedra nor 3-connected polyhedral structures. Theoretical analysis indicates that the major stabilization of the Ge backbones arises due to the substantial interaction of Ge 4p-AOs with the endohedral Nb 4d-AOs through three/four-center two-electron bonds with an enhanced electron density accumulated over the shortest Nb−Ge13 contact in 1 . Low occupancies of the direct two-center two-electron (2c–2e) Nb−Ge and Ge−Ge σ bonds point to a considerable degree of electron delocalization over the Ge cages revealing their electron deficiency.  相似文献   
7.
Controlling redox activity of judiciously appended redox units on a photo-sensitive molecular core is an effective strategy for visible light energy harvesting and storage. The first example of a photosensitizer - electron donor coordination compound in which the photoinduced electron transfer step is used for light to electrical energy conversion and storage is reported. A photo-responsive Ru-diimine module conjugated with redox-active catechol groups in [Ru(II)(phenanthroline-5,6-diolate)3]4− photosensitizer can mediate photoinduced catechol to dione oxidation in the presence of a sacrificial electron acceptor or at the surface of an electrode. Under potentiostatic condition, visible light triggered current density enhancement confirmed the light harvesting ability of this photosensitizer. Upon implementation in galvanostatic charge-discharge of a Li battery configuration, the storage capacity was found to be increased by 100 %, under 470 nm illumination with output power of 4.0 mW/cm−2. This proof-of-concept molecular system marks an important milestone towards a new generation of molecular photo-rechargeable materials.  相似文献   
8.
Covalent functionalization of 2D materials provides a tailored approach towards tuning of their chemical, optical, and electronic properties making the search for new ways to graft small molecules important. Herein, the reaction with (3,5-bis(trifluoromethyl)phenyl)iodonium salt is revealed as an effective strategy for functionalization of MoTe2 thin films. Upon decomposition of the salt, the generated radicals graft covalently as aryl-(CF3)2 groups at the surface of both metallic (1T’) and semiconducting (2H) polymorphs of MoTe2. Remarkably, the reactivity of the salt is governed by the electronic structure of the given polymorph. While the functionalization of the metallic MoTe2 occurs spontaneously, the semiconducting MoTe2 requires activation by light. The reaction proceeds with the elimination of oxide from the original films yielding the functionalized products that remain protected in ambient conditions, presenting a viable solution to the ageing of MoTe2 in air.  相似文献   
9.
Computational modeling of the optical characteristics of organic molecules with potential for thermally activated delayed fluorescence (TADF) may assist markedly the development of more efficient emitting materials for organic light-emitting diodes. Recent theoretical studies in this area employ mostly methods from density functional theory (DFT). In order to obtain accurate predictions within this approach, the choice of a proper functional is crucial. In the current study, we focus on testing the performance of a set of DFT functionals for estimation of the excitation and emission energy and the excited singlet-triplet energy gap of three newly synthesized compounds with capacity for TADF. The emitters are designed specifically to enable charge transfer by π-electron conjugation, at the same time possessing high-energy excited triplet states. The functionals chosen for testing are from various groups ranging from gradient-corrected through global hybrids to range-separated ones. The results show that the monitored optical properties are especially sensitive to how the long-range part of the exchange energy is treated within the functional. The accurate functional should also be able to provide well balanced distribution of the π-electrons among the molecular fragments. Global hybrids with moderate (less than 0.4) share of exact exchange (B3LYP, PBE0) and the meta-GGA HSE06 are outlined as the best performing methods for the systems under study. They can predict all important optical parameters correctly, both qualitatively and quantitatively.  相似文献   
10.
分子张力作为空间设计的重要组成部分正成为调控有机半导体的重要手段。由于分子内产生的拉伸张力、扭曲/弯曲张力以及空间张力而导致p轨道排布重组和构型构象结构发生变化,最近各种几何与拓扑结构的高张力有机半导体材料相继被报道,这使得高张力有机半导体材料成为有机电子领域研究的焦点。为了进一步梳理分子张力在有机半导体材料中扮演的角色与价值,该综述从分子张力的类型、实验与理论量化以及可视化出发,总结了高张力共轭芳烃的分子设计策略、与其光电性能分子张力之间的关系,以及这类新兴材料在光电领域的应用。最后,对高张力共轭芳烃的研究前景进行了展望,阐述了该类材料所面临的机遇与挑战。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号