首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   277篇
  免费   17篇
  国内免费   5篇
化学   218篇
力学   9篇
数学   31篇
物理学   41篇
  2023年   5篇
  2022年   7篇
  2021年   11篇
  2020年   21篇
  2019年   21篇
  2018年   25篇
  2017年   14篇
  2016年   33篇
  2015年   11篇
  2014年   13篇
  2013年   28篇
  2012年   19篇
  2011年   19篇
  2010年   12篇
  2009年   11篇
  2008年   16篇
  2007年   5篇
  2006年   6篇
  2005年   1篇
  2004年   2篇
  2003年   2篇
  2002年   2篇
  2000年   2篇
  1997年   3篇
  1996年   3篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1961年   1篇
排序方式: 共有299条查询结果,搜索用时 15 毫秒
1.
Molecular Diversity - In this research, QSAR modeling was carried out through SMILES of compounds and on the basis of the Monte Carlo method to predict the antioxidant activity of 79 derivatives of...  相似文献   
2.
During the last two decades, with the development of nanotechnology, various nanomaterials have been designed and generated. Among them, hybrid organic–inorganic nanoparticles as a particular immobilizing carrier of the catalyst active sites have shown an important contribution in the current research studies. This is due to the large area and loads of active sites. This prominent review is focused on the novel various exa about the immobilization of nanoparticles with organic compounds as versatile and efficient catalysts in organic syntheses.  相似文献   
3.
4.
5.
This review gives an overview of the electrochemical investigations about the properties of various types of graphene composites in the ethanol oxidation. Various routes to provide appropriate graphene‐based materials required electrochemical techniques for investigation of different types of the materials as well as their performance and efficacy in ethanol oxidation are discussed in detail. Furthermore, it is demonstrated that the incorporation of suitable materials, e. g. noble metals (graphene‐supported binary and ternary metal nanoparticles), metal oxides, conductive polymer, etc, with graphene results in excellent electrocatalytic activity, superb durability and selectivity in ethanol oxidation. Immobilization of electrocatalytically active NPs on graphene supports using physical approaches is considered as an effective route to prepare direct ethanol fuel cell (DEFC) anode catalysts.  相似文献   
6.
Seven novel complexes (C1–C7) were synthesized by the interaction between Cu(I) metal cation, L1, L2, L3, X and PPh3, where L1–L3 are derivatives of ((pyridine-2-ylmethylene)amino)phenol imine ligands and X = Cl, Br, I, NCS. All the complexes were characterized using infrared, 1H NMR and 31P NMR spectroscopies. The crystal structures of C1–C7 were also determined using single-crystal X-ray diffraction. The organization of the crystal structures and the intermolecular interactions are discussed. The supramolecular assemblies are driven by cooperative π…π interactions and hydrogen bonds, followed by CH…π linkages. The potential anticancer effect of C1–C7 was assessed for human glioblastoma cells using several anticancer experiments, which showed that these complexes have marked anticancer property against U87 cells. It was also found that the minimum and maximum anticancer effects are shown by C3- and C4-treated samples, respectively. Furthermore, theoretical approaches were used to investigate the nature of metal–ligand interactions which suggest a closed-shell and electrostatic character for Cu…N, Cu…P and Cu…X bonds.  相似文献   
7.
In this study, nanocrystalline cellulose (NCC) prepared from microcrystalline cellulose using high‐intensity ultrasonication as mechanical method without any chemical treatment. The obtained NCC with around 30–50 nm diameters, utilized as support, reducing and stabilizing agent for in‐situ green and eco‐friendly synthesis of silver nanoparticles (Ag NPs). The catalytic activity of composite was examined for degradation of environmental pollutants. The structure of as‐synthesized composite (Ag@NCC) was characterized by ultraviolet–visible spectroscopy (UV–vis), field emission scanning electron microscopy (FE‐SEM); Transmission electron microscopy (TEM); Energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FT‐IR), X‐ray diffraction (XRD) and thermogravimetric analysis (TGA). The results of the catalytic reaction experiments showed that spherically shaped silver nanoparticles of around 20 nm distributed on the surface of nanocellulose demonstrated high catalytic efficiency towards the removal of methyl orange (MO) and 4‐nitrophenol (4‐NP).  相似文献   
8.
A novel nanocatalyst was designed and prepared. Initially, the surface of magnetic graphene oxide (M‐GO) was modified using thionyl chloride, tris(hydroxymethyl)aminomethane and acryloyl chloride as linkers which provide reactive C═C bonds for the polymerization of vinylic monomers. Separately, β‐cyclodextrin (β‐CD) was treated with acryloyl chloride to provide a modified β‐CD. Then, in the presence methylenebisacrylamide as a cross‐linker, monomers of modified β‐CD and acrylamide were polymerized on the surface of the pre‐prepared M‐GO. Finally, palladium acetate and sodium borohydride were added to this composite to afford supported palladium nanoparticles. This fabricated nanocomposite was fully characterized using various techniques. The efficiency of this easily separable and reusable heterogeneous catalyst was successfully examined in Suzuki–Miyaura cross‐coupling reactions of aryl halides and boronic acid as well as in modified Suzuki–Miyaura cross‐coupling reactions of N‐acylsuccinimides and boronic acid in green media. The results showed that the nanocatalyst was efficient in coupling reactions for direct formation of the corresponding biphenyl as well as benzophenone derivatives in green media based on bio‐based solvents. In addition, the nanocatalyst was easily separable, using an external magnet, and could be reused several times without significant loss of activity under the optimum reaction conditions.  相似文献   
9.
CoFe2O4@SiO2‐CPTES‐Guanidine‐Cu(II) magnetic nanoparticles were synthesized and used as a new, inexpensive and efficient heterogeneous catalyst for the synthesis of polyhydroquinolines and 2,3‐dihydroquinazoline‐4(1H)‐ones and for the oxidation of sulfides. The structure of this nanocatalyst was characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, vibrating sample magnetometry, thermogravimetric analysis, X‐ray diffraction and inductively coupled plasma optical emission spectrometry. Simple preparation, high catalytic activity, simple operation, high yields, use of green solvents, easy magnetic separation and reusability of the catalyst are some of the advantages of this protocol.  相似文献   
10.
ABSTRACT

The scope of output-only/blind identification is restricted to stochastic/statistical processes, but for the first time in this study, the detectability conditions for general output-only subspace identification are investigated. This aids the range of input sources to be extended in a much realistic manner, beyond the only stochastic inputs. For this purpose, the subspace framework is assigned to make a connection between the output signal contents and the LTI system order. A few substantial hypotheses and algebraic statements are propounded affirming the sufficiency of the genuine output sequences for the identification purpose. This can be perceived as the cornerstone of state-space model reconstruction. In order to consolidate the notions according to reality, several examples are studied and examined for different input classes with stochastic disturbance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号