首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   1篇
力学   1篇
物理学   4篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2016年   1篇
  2015年   1篇
排序方式: 共有5条查询结果,搜索用时 16 毫秒
1
1.
直接积分法是求解动力学方程的一种有效方法。应用一种预估-校正的Generalized-α法对结构大变形动力学问题进行分析求解,并与Newmark法和Bathe法进行对比研究。首先预估当前计算步的解,然后以预估值作为起始值进行非线性迭代计算,并对解不断校正,直到满足收敛条件,进入下一时间步的计算。在保证Generalized-α法性能的基础上,简化了非线性迭代公式,便于编程实现。通过壳和实体的大变形动力学算例,证明了本文方法具有较高的稳定性和精度。  相似文献   
2.
利用分布反馈式(DFB)二极管激光器为光源, 搭建了一套2 μm波段的离轴积分腔输出光谱装置. 利用高纯甲烷气体, 测量了腔镜反射率随腔内气体压力 变化的规律. 当腔内压力为3.59 kPa 时, 标定的镜面反射率为0.99865, 在此条件下, 基长55 cm 的离轴积分腔实现了407.4 m的吸收光程. 选取CO2 在4993.7431 cm-1处的吸收谱线对实际大气中的CO2浓度进行了测量, 探测限为0.53 ppmv (1σ), 利用小波去噪对光谱信号进行了去噪处理, 信噪比提高了80%, 探测限提高到0.29 ppmv(1σ). 利用搭建的装置在实验室内测量了从上午9时到中午12时实际大气中CO2的浓度, 并与H2O/CO2分析仪进行了同时观测与对比分析, 初步验证了测量装置的可靠性.  相似文献   
3.
陈红岩  李志彬 《应用声学》2015,23(12):95-95
为实现对汽车尾气中CO、CO2、HC化合物的测量,提出了一种新型汽车尾气检测传感器的设计方案。该方案根据不分光红外法(NDIR)检测原理,讨论了汽车尾气检测传感器的整体结构和软硬件的实现方法;传感器采用新型的红外光源和四通道红外探测器,可以同时测量汽车尾气中CO、CO2、HC化合物的浓度;采用双进双出的圆柱形气室结构,可以提高系统的检测灵敏度和测量精度。实验结果表明,传感器的相对误差在±3%之内,具有良好的精度和稳定性,能够满足汽车尾气浓度测量分析的需求。  相似文献   
4.
磷灰石是珠宝市场上常见的宝石品种,因颜色丰富而广受欢迎。变色磷灰石是稀有品种且价格高昂,该品种在D65光源(色温6 500 K)下呈黄绿色,A光源(色温2 856 K)下呈粉红色,其可见光光谱的谱学特征与变色成因未被详细研究。基于此,将一颗变色磷灰石晶体,沿其平行c轴和垂直c轴方向各切下一个薄片并双面平行抛光,分别测试其可见光光谱与微量元素。结果发现,其可见光光谱中谱峰较多:位于583和578 nm处的吸收双峰强度最强,位于748和738 nm处的吸收双峰强度中等,分别位于688和526 nm处的吸收峰,强度较弱。还有一些非常微弱的吸收峰,分别位于514,483,473和443 nm处。位于748和738 nm处的吸收双峰与583和578 nm处的吸收双峰共同造成了红橙光区的透射窗,583和578 nm处的吸收双峰与526 nm处的吸收峰共同造成了黄绿光区的透射窗。D65光源和A光源由于相对光谱功率分布不同,在不同透射窗的透过有所不同,导致变色磷灰石在不同光源下呈现出不同颜色。D65光源中黄绿光成分较多,透过黄绿光区透射窗的成分较多,D65光源下磷灰石呈黄绿色,A光源中红光成分较多,通过红橙光区透射窗的成分较多,A光源下磷灰石呈粉红色。因此,磷灰石的变色效应与位于748和738 nm处的吸收双峰,位于583和578 nm处的吸收双峰以及位于526 nm处的吸收峰相关。根据微量元素数据与稀土元素的晶体场理论,这些吸收峰是由稀土元素钕(Nd)导致。根据不同晶体方向样品的可见光光谱特征,平行c轴方向变色效果更好,建议加工变色磷灰石晶体时宝石台面应尽量平行c轴。该研究结合微量元素与可见光光谱分析了变色磷灰石的变色成因,并为其加工切割方向提供了指导。  相似文献   
5.
坦桑尼亚Umba出产颜色丰富的刚玉,该研究对象是一颗来自Umba的具有特殊变色效应的蓝宝石,D65光源(色温6 500 K)下呈现淡黄色,A光源(色温2 856 K)下呈现淡紫红色。为了研究这颗变色蓝宝石紫外-可见光光谱中的谱峰归属与变色成因,该研究使用电荷补偿理论来分析此样品紫外-可见光光谱中的谱峰归属。采用紫外-可见分光光度计(UV-Vis)和激光剥蚀电感耦合等离子体质谱仪(LA-ICP-MS)对这颗变色蓝宝石进行了测试。结果发现,变色蓝宝石紫外-可见光光谱中存在位于377,388和450 nm处的3个吸收峰和1个以560 nm为中心的宽缓吸收带。样品的颜色主要受450 nm处吸收峰和以560 nm为中心的吸收带影响,其中以560 nm为中心的吸收带造成了这颗蓝宝石的变色效应。根据激光剥蚀电感耦合等离子体质谱仪的测试结果,样品中主要杂质元素有Fe,Ti,Cr,V和Mg等。样品紫外-可见光光谱中377,388和450 nm处的吸收峰是由Fe3+导致。蓝宝石中的Cr3+,V3+,Fe2+-Ti4+对都可以在560 nm附近产生吸收,结合电荷补偿理论分析,刚玉中的Mg2+会优先和Ti4+进行电荷补偿,样品中Mg含量要稍微高于Ti,推测样品中几乎所有Ti4+会与Mg2+进行电荷补偿,因此样品中几乎不会存在Fe2+-Ti4+对。Fe2+-Ti4+对电荷转移产生的吸收特征具有很强的偏振性,尤其是在580 nm以后的吸收特征会随着偏振方向的改变而有很明显的变化。偏振紫外-可见光光谱测试发现以560 nm为中心的吸收带没有明显的偏振性,进一步验证了样品中几乎没有Fe2+-Ti4+对,因此以560 nm为中心的吸收带主要是由于Cr3+和V3+造成的。样品的颜色主要是由Fe3+,Cr3+和V3+引起的,而变色效应主要是由Cr3+和V3+导致。结合电荷补偿机制与偏振-紫外可见光光谱来解释这颗变色蓝宝石的紫外-可见光光谱中以560 nm为中心的吸收带的归属,为研究刚玉紫外-可见光光谱中较为常见的位于560 nm左右吸收带的归属提供了一种新的研究思路。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号