首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4682篇
  免费   1041篇
  国内免费   1392篇
化学   5618篇
晶体学   82篇
力学   81篇
综合类   35篇
数学   545篇
物理学   754篇
  2024年   6篇
  2023年   64篇
  2022年   90篇
  2021年   115篇
  2020年   152篇
  2019年   155篇
  2018年   126篇
  2017年   153篇
  2016年   195篇
  2015年   476篇
  2014年   505篇
  2013年   287篇
  2012年   287篇
  2011年   328篇
  2010年   261篇
  2009年   388篇
  2008年   379篇
  2007年   321篇
  2006年   329篇
  2005年   264篇
  2004年   307篇
  2003年   275篇
  2002年   219篇
  2001年   172篇
  2000年   145篇
  1999年   126篇
  1998年   125篇
  1997年   132篇
  1996年   110篇
  1995年   116篇
  1994年   107篇
  1993年   87篇
  1992年   62篇
  1991年   39篇
  1990年   44篇
  1989年   27篇
  1988年   19篇
  1987年   13篇
  1986年   17篇
  1985年   13篇
  1984年   9篇
  1983年   5篇
  1982年   5篇
  1981年   6篇
  1980年   15篇
  1979年   10篇
  1978年   10篇
  1977年   9篇
  1975年   3篇
  1974年   3篇
排序方式: 共有7115条查询结果,搜索用时 140 毫秒
1.
大尺寸低缺陷碳化硅(SiC)单晶体是功率器件和射频(RF)器件的重要基础材料,物理气相传输(physical vapor transport, PVT)法是目前生长大尺寸SiC单晶体的主要方法。获得大尺寸高品质晶体的核心是通过调节组分、温度、压力实现气相组分在晶体生长界面均匀定向结晶,同时尽可能减小晶体的热应力。本文对电阻加热式8英寸(1英寸=2.54 cm)碳化硅大尺寸晶体生长系统展开热场设计研究。首先建立描述碳化硅原料受热分解热质输运及其多孔结构演变、系统热输运的物理和数学模型,进而使用数值模拟方法研究加热器位置、加热器功率和辐射孔径对温度分布的影响及其规律,并优化热场结构。数值模拟结果显示,通过优化散热孔形状、保温棉的结构等设计参数,电阻加热式大尺寸晶体生长系统在晶锭厚度变化、多孔介质原料消耗的情况下均能达到较低的晶体横向温度梯度和较高的纵向温度梯度。  相似文献   
2.
This study investigated the effects of different treatment of alkaline pH-shifting on milk protein concentrate (MPC), micellar casein concentrate (MCC) and whey protein isolate (WPI) assisted by the same ultrasound conditions, including changes in the physicochemical properties, solubility and foaming capacity. The solubility of milk proteins had a significant increase with gradual enhancement of ultrasound-assisted alkaline pH-shifting (p < 0.05), especially for MCC up to 99.50 %. Also, treatment made a significant decline in the particle size of MPC and MCC, as well as the turbidity of the proteins (p < 0.05). The foaming capacity of MPC, MCC, and WPI was all improved, especially at pH 11, and at this pH, the milk protein also showed the highest surface hydrophobicity. The best foaming capacity at pH 11 was the result of the combined effect of particle size, potential, protein conformation, solubility, and surface hydrophobicity. In conclusion, ultrasound-assisted pH-shifting treatment was found to be effective in improving the physicochemical properties and solubility and foaming capacity of milk proteins, especially MCC, with promising application prospect in food industry.  相似文献   
3.
The direct 2‐deoxyglycosylation of nucleophiles with glycals leads to biologically and pharmacologically important 2‐deoxysugar compounds. Although the direct addition of hydroxyl and sulfonamide groups have been well developed, the direct 2‐deoxyglycosylation of amide groups has not been reported to date. Herein, we show the first direct 2‐deoxyglycosylation of amide groups using a newly designed Brønsted acid catalyst under mild conditions. Through mechanistic investigations, we discovered that the amide group can inhibit acid catalysts, and the inhibition has made the 2‐deoxyglycosylation reaction difficult. Diffusion‐ordered two‐dimensional NMR spectroscopy analysis implied that the 2‐chloroazolium salt catalyst was less likely to form aggregates with amides in comparison to other acid catalysts. The chlorine atom and the extended π‐scaffold of the catalyst played a crucial role for this phenomenon. This relative insusceptibility to inhibition by amides is more responsible for the catalytic activity than the strength of the acidity.  相似文献   
4.
The interaction between cucurbit[8]uril(Q[8]) and oroxin B(ORB) was investigated by UV-visible(UV-Vis) spectroscopy, isothermal titration calorimetry(ITC), mass spectrum(MS) and nuclear magnetic resonance(NMR) spectroscopy. The results showed that ORB formed a 2:1 inclusion complex with Q[8] with a binding constant of 8.266×105 L2·mol-2. ORB had good scavenging ability for 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulphonate)(ABTS) free radicals(IC50=5.74 μmol/L) and the addition of Q[8] did not significantly affect the antioxidant activity of ORB(IC50=5.76 μmol/L). A phase solubility experiment revealed a 1.86-fold increase in the solubility of ORB when c(Q[8])=100 μmol/L. In vitro drug release experiments showed that the release rate for ORB@Q[8] complex was lower than that of ORB in artificial intestinal juice, and higher than that of ORB in artificial gastric juice.  相似文献   
5.
Zeolite Beta single crystals with intracrystalline hierarchical porosity at macro-, meso-, and micro-length scales can effectively overcome the diffusion limitations in the conversion of bulky molecules. However, the construction of large zeolite Beta single crystals with such porosity is a challenge. We report herein the synthesis of hierarchically ordered macro-mesoporous single-crystalline zeolite Beta (OMMS-Beta) with a rare micron-scale crystal size by an in situ bottom-up confined zeolite crystallization strategy. The fully interconnected intracrystalline macro-meso-microporous hierarchy and the micron-sized single-crystalline nature of OMMS-Beta lead to improved accessibility to active sites and outstanding (hydro)thermal stability. Higher catalytic performances in gas-phase and liquid-phase acid-catalyzed reactions involving bulky molecules are obtained compared to commercial Beta and nanosized Beta zeolites. The strategy has been extended to the synthesis of other zeolitic materials, including ZSM-5, TS-1, and SAPO-34.  相似文献   
6.
Zeolites have taken a leading position in petrochemical, fine, and bulk chemical industries due to their porous architecture, pore sizes, tunable acidity, and thermal stability. Various strategies of zeolites preparation, including template‐free, solvent‐free, and toxic mineral‐free strategies are summarized. Moreover, the zeolite synthesis using naturally occurring minerals and sustainable natural templates is also discussed, which involves the synthesis of nanocrystalline zeolites of different framework structures using plant‐based natural templates and biomass‐derived renewable chemicals. Overall this personal account provides the fundamentals of various sustainable synthetic strategies reported in the literature for the synthesis of zeolites with suitable examples that will be useful for the students and will motivate experienced researchers to develop various novel sustainable methods for the synthesis of zeolites and other inorganic materials of industrial relevance.  相似文献   
7.
A study, involving kinetic measurements on the stopped‐flow and conventional UV/Vis timescales, ESI‐MS, NMR spectroscopy and DFT calculations, has been carried out to understand the mechanism of the reaction of [Mo3S4(acac)3(py)3][PF6] ([ 1 ]PF6; acac=acetylacetonate, py=pyridine) with two RC?CR alkynes (R=CH2OH (btd), COOH (adc)) in CH3CN. Both reactions show polyphasic kinetics, but experimental and computational data indicate that alkyne activation occurs in a single kinetic step through a concerted mechanism similar to that of organic [3+2] cycloaddition reactions, in this case through the interaction with one Mo(μ‐S)2 moiety of [ 1 ]+. The rate of this step is three orders of magnitude faster for adc than that for btd, and the products initially formed evolve in subsequent steps into compounds that result from substitution of py ligands or from reorganization to give species with different structures. Activation strain analysis of the [3+2] cycloaddition step reveals that the deformation of the two reactants has a small contribution to the difference in the computed activation barriers, which is mainly associated with the change in the extent of their interaction at the transition‐state structures. Subsequent frontier molecular orbital analysis shows that the carboxylic acid substituents on adc stabilize its HOMO and LUMO orbitals with respect to those on btd due to better electron‐withdrawing properties. As a result, the frontier molecular orbitals of the cluster and alkyne become closer in energy; this allows a stronger interaction.  相似文献   
8.
Blocking the C2 position of an imidazole‐derived classical N‐heterocyclic carbene (NHC) with an aryl group is an essential strategy to establish a route to mesoionic carbenes (MICs), which coordinate to the metal via the C4 (or C5) carbon atom. An efficient catalytic route to MIC precursors by direct arylation of an NHC is reported. Treatment of 1,3‐bis(2,6‐diisopropylphenyl)imidazol‐2‐ylidene (IPr) with an aryl iodide (RC6H4I) in the presence of 0.5 mol % of [Pd2(dba)3] (dba=dibenzylideneacetone) precatalyst affords the C2‐arylated imidazolium salts {IPr(C6H4R)}I (R=H, 4‐Me, 2‐Me, 4‐OMe, 4‐COOMe) in excellent (up to 92 %) yields. Treatment of {IPr(C6H5)}I with CuI and KN(SiMe3)2 exclusively affords the MIC–copper complex [(IPrPh)CuI].  相似文献   
9.
A highly site‐selective, heteroatom‐guided, palladium‐catalyzed direct arylation of 4H‐chromenes is reported. The C?H functionalization is driven not only by the substituents and structure of the substrate but also by the coupling partner being used. The diastereoselective assembly of the core structure of Myristinin B has been achieved by using a dual C?H functionalization strategy for regioselective direct arylation.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号