首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2971篇
  免费   349篇
  国内免费   416篇
化学   2279篇
晶体学   273篇
力学   99篇
综合类   37篇
数学   24篇
物理学   1024篇
  2024年   2篇
  2023年   18篇
  2022年   28篇
  2021年   55篇
  2020年   72篇
  2019年   60篇
  2018年   75篇
  2017年   104篇
  2016年   134篇
  2015年   128篇
  2014年   141篇
  2013年   334篇
  2012年   167篇
  2011年   189篇
  2010年   206篇
  2009年   188篇
  2008年   199篇
  2007年   251篇
  2006年   222篇
  2005年   181篇
  2004年   180篇
  2003年   155篇
  2002年   122篇
  2001年   79篇
  2000年   49篇
  1999年   42篇
  1998年   44篇
  1997年   31篇
  1996年   54篇
  1995年   46篇
  1994年   43篇
  1993年   44篇
  1992年   38篇
  1991年   8篇
  1990年   7篇
  1989年   7篇
  1988年   6篇
  1987年   4篇
  1986年   6篇
  1985年   4篇
  1984年   5篇
  1982年   4篇
  1981年   3篇
  1959年   1篇
排序方式: 共有3736条查询结果,搜索用时 46 毫秒
1.
In this review, methods to obtain the orientational order of topologically variant molecular mesogens using by one- and two-dimensional (2D) solid-state 13C nuclear magnetic resonance (NMR) spectroscopy are described. Besides 13C chemical shifts, the 13C─1H dipolar couplings measured from 2D-separated local field (SLF) technique are used for computing the order parameters of a variety of mesogens. The investigated molecules are composed of a variable number of rings in the core, that is, core ranging from simply one ring to five rings. Among the mesogens investigated, a special focus has been placed on mesogens with thiophene rings, which are gaining popularity as liquid crystalline organic semiconductors. The replacement of a phenyl ring by thiophene in the core has a dramatic influence on molecular topology, as observed from the measured order parameters. The review highlights the advantages of the 2D SLF method for understanding the local dynamics and for mapping the topology of mesogens through the measured order parameters. SLF NMR studies of as many as 24 molecular mesogens that vary in terms of the molecular structure as well as topology are covered in the review. Order parameters of the rings have been estimated from the 13C─1H dipolar couplings in the nematic, smectic A, smectic C, and tilted hexatic phases as well as in B1 and B2 mesophases of various mesogens. It is anticipated that, in the years to come, the 2D SLF method would provide advanced molecular information on structurally complex mesogens that are emerging in liquid crystal science through the incessant efforts of synthetic chemists. The mini review covers the orientational order of topologically variant molecular mesogens determined by 1D and 2D solid-state 13C NMR spectroscopy. Accordingly, rod-like, bent-core, and thiophene mesogens were subjected to 2D SLF measurements to get the order parameters from which the topology was established. The replacement of phenyl ring by thiophene and its influence on order parameters as well as on molecular topology is also discussed.  相似文献   
2.
Random copolymers of poly(4-vinylpyridine) and polyisoprene were synthesized, and subsequently quaternized with 1-alkylbromides. The number of carbons on the pendant side-chain of the resultant comb-shaped polymer, n, ranged from 2–8. The comb-shaped polymers were crosslinked employing thiol-ene chemistry to give mechanically robust ion conducting membranes. Analysis by wide and medium-angle X-ray scattering show three morphology regimes that are dependent on the number of carbons on the pendant side-chains. When n = 2, ionomer cluster morphology was dominant, when n = 8 backbone-backbone morphology was dominant, and when n = 3–6, the membrane showed a coexistence of both ionomer cluster and backbone-backbone morphologies. Evaluation of the water uptake of the membranes showed a maximum water uptake per cation of 9.5 when n = 5 at 95% relative humidity (RH) and 60°C. Conductivity of the samples characterized by electrochemical impedance spectroscopy showed bromide conductivity as high as 110 mS/cm when n = 3 at 95% RH and 90°C.  相似文献   
3.
A series of phenolic epoxy resin (PEP) modified polyurethane foams (PUF) were prepared via an in-situ polymerization, one step process. It was found that the epoxy modified PUF foam exhibited a perforated network structure with larger cell size, higher open cell porosity and enhanced ovality compared with pure PUF. With increasing content of PEP, the tensile strength, elongation at break and low temperature modulus of PUF decreased. A single Tg was observed for PEP modified PUF, indicating that the two component phases of the polyurethane-epoxy were miscible. With increasing PEP content, the Tg of PUF shifted slightly to higher temperature, tan δmax dropped to lower values, and the retention value of the storage modulus at ?20 and ?10?°C increased. For pure PUF, the cell walls degraded and the structure became disordered after aging under heat and stress, while for PUF/20wt%PEP, the degradation degree was obviously reduced, and an orientation of the cells along the stress direction and a density increase was observed. During aging at 200?°C, the retention of the mechanical properties of PUF/20wt% PEP was much higher than that of pure PUF, and it showed superior stability under heat and stress, attributed to incorporation of the thermally resistant oxazolidone rings and benzene rings in the PU backbones, the highly cross-linked networks of the polyurethane-epoxy systems and the obvious orientation of the cells under stress.  相似文献   
4.
This article describes the investigation of the importance of various reaction conditions on microsyneretic pore formation during polymerization of divinylbenzene (DVB) under so‐called “solvothermal” conditions. To induce microsyneretic pore formation, the most important parameter is an unusually high dilution of monomers with a “good” porogen solvating the polymer chains. High dilution and solvation of the growing poly(DVB) chains promote the prolongation of the polymer chains rather than their interconnection by crosslinking. Consequently, when the polymer gel density reaches the point where syneresis starts, the polymer network is geometrically too extensive to be broken up into precipitating entities and, instead, porogen droplets are formed within the continuous polymer gel. The pore geometry created by microsyneresis offers high surface area in wide mesopores and hence, high capacity for supporting functional groups or reactions with much better accessibility than narrow pores between polymer microspheres produced by macrosyneresis in conventional styrenic polymer supports. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 774–781  相似文献   
5.
Partially fluorinated poly(arylene ether sulfone) multiblock copolymers bearing perfluorosulfonic functions (ps‐PES‐FPES), with ionic exchange capacity (IEC) ranging between 0.9 and 1.5 meq H+/g, are synthesized by regioselective bromination of partially fluorinated poly(arylene ether sulfone) multiblock copolymers (PES‐FPES), followed by Ullman coupling reaction with lithium 1,1,2,2‐tetrafluoro‐2‐(1,1,2,2‐tetrafluoro‐2‐iodoethoxy)ethanesulfonate. The PES‐FPES are prepared by aromatic nucleophilic substitution reaction by an original approach, that is, “one pot two reactions synthesis.” The chemical structures of polymers are analyzed by 1H and 19F NMR spectroscopy. The resulted ionomers present two distinct glass transitions and α relaxations revealing phase separation between the hydrophilic and the hydrophobic domains. The phase separation is observed at much lower block lengths of ps‐PES‐FPES as compared with the literature. AFM and SANS observations supported the phase separation, the hydrophilic domains are well dispersed but the connectivity to each other depends on the ps‐PES block lengths. The thermomechanical behavior, the water up‐take, and the conductivity of the ps‐PES‐FPES membranes are compared with those of Nafion 117® and randomly functionalized polysulfone (ps‐PES). Conductivities close or higher to those of Nafion 117® are obtained. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1941–1956  相似文献   
6.
Small molecule additives have been shown to increase the device efficiency of conjugated polymer (donor) and fullerene derivative (acceptor) based organic solar cells by modifying the morphology of the device active layer. In this paper we conduct a systematic study of how additives affect the donor‐acceptor morphology using molecular dynamics simulations of blends of thiophene‐based oligomers, mimicking poly(3‐dodecylthiophene) (P3DDT) or poly(2,2′:5′,2”‐3,3”‐didocyl‐terthiophene) (PTTT), and fullerene derivatives with additives of varying length and chemical functionalization, mimicking experimentally used additives like methyl ester additives, diiodooctane, and alkanedithiols. We find that functionalization of additives with end groups that are attracted to acceptor molecules are necessary to induce increased donor‐acceptor macrophase separation. In blends where acceptors intercalate between oligomer alkyl side chains, functionalized additives decrease acceptor intercalation. Functionalized additives with shorter alkyl segments increase acceptor macrophase separation more than additives with same chemical functionalization but longer alkyl segments. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1046–1057  相似文献   
7.
Charge transport properties in thin films of Poly(2‐methoxy‐5‐(3′,7′‐dimethyloctyloxy)‐1,4‐phenylenevinylene) (MDMO PPV) cast using either chloroform (CF), toluene (TOL), or chlorobenzene (CB) as solvent were investigated. Hole mobility (μ) in these thin films measured using time‐of‐flight transient photoconductivity showed an increasing trend with respect to the solvent used in the same order, that is, μCF (2.4 × 10?7 cm2/Vs) < μTOL (6.9 × 10?7 cm2/Vs) < μCB (2.3 × 10?6 cm2/Vs). Observed variations in mobilities were attributed to different morphologies of MDMO PPV chains in thin films cast using the aforesaid solvents. Nature of the interchain interactions and aggregate formation were obtained using photoluminescence (PL), Raman spectroscopy, and AFM studies. Ratio of PL peak intensities of 0–0 and 0–1 transitions, which is a direct measure of interchain interaction, was the highest in CB and lowest in CF. Variation in the relative intensities of out‐of‐plane wagging of vinylene group (~963 cm?1 mode) in Raman spectra suggested different extent of coiling of polymer chains in these thin films. From these observations, it was elicited that aggregate size and interchain interactions are highest in CB and least in CF. AFM‐based topographic images of thin films further supported these variations in the size of aggregates. Variation in the aggregate sizes and interchain interactions explained the corresponding variation in the mobility. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1431–1439  相似文献   
8.
Star copolymers have attracted significant interest due to their different characteristics compared with diblock copolymers, including higher critical micelle concentration, lower viscosity, unique spatial shape, or morphologies. Development of synthetic skills such as anionic polymerization and controlled radical polymerization have made it possible to make diverse architectures of polymers. Depending on the molecular architecture of the copolymer, numerous morphologies are possible, for instance, Archimedean tiling patterns and cylindrical microdomains at symmetric volume fraction for miktoarm star copolymers as well as asymmetric lamellar microdomains for star‐shaped copolymers, which have not been reported for linear block copolymers. In this review, we focus on morphologies and microphase separations of miktoarm (AmBn and ABC miktoarm) star copolymers and star‐shaped [(A‐b‐B)n] copolymers with nonlinear architecture. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1–21  相似文献   
9.
Effects of top confinement and diluent poly(ethylene oxide) (PEO) on poly(l ‐lactic acid) (PLLA) crystal morphology have been investigated. When crystallized at 120 °C, uncovered neat PLLA sample exhibits higher growth rate ringless spherulites; while the covered sample exhibits lower growth rate ring‐banded spherulites. As PEO is introduced into PLLA, the morphology also undergoes significant changes. For the same Tc,PLLA = 120 °C, the PEO/PLLA blend with PEO composition greater than 25% exhibits ring‐banded patterns even in uncovered sample. However, in much greater PEO composition (>80 wt %), uncovered samples exhibit ring bands diverging into dendritic patterns, while top covered samples tend to maintain the spiral ring‐band patterns. Both PEO inclusion in PLLA and top cover on films impose growth kinetic alterations. Additionally, the top glass cover tends to prevent the lower surface tension PLLA to be accumulated on the surface, resulting in the formation of ring‐band pattern. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1160–1170  相似文献   
10.
Reproducible and uncharacteristic tensile stress–strain behavior of cured glassy epoxy‐amine networks produces distinctive fracture surfaces. Test specimens exhibiting plastic flow result in mirror‐like fracture surfaces, whereas samples that fail during yield or strain softening regions possess nominal mirror‐mist‐hackle topography. Atomic force microscopy and scanning electron microscopy reveal branched nodule morphologies in the 50‐nm size scale that may be responsible for the unusual tensile properties. Current hypothesis is that plastic flow of the glassy thermoset occurs through the existence and deformation of these nodular nanostructures. The thermal cure profile of the epoxy‐amine thermoset affects the size and formation of the nodular nanostructure. Eliminating vitrification during thermoset polymerization forms a more continuous phase, reduction in size of the nodules, and eliminates the capacity of the material to yield in plastic flow. This maximizes nanostructure connectivity of the glassy epoxy‐amine thermoset and reduces strain to failure significantly. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1333–1344.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号