首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   88篇
  免费   25篇
  国内免费   13篇
化学   116篇
物理学   10篇
  2023年   7篇
  2022年   1篇
  2021年   5篇
  2020年   17篇
  2019年   13篇
  2018年   17篇
  2017年   15篇
  2016年   22篇
  2015年   6篇
  2014年   8篇
  2013年   6篇
  2012年   4篇
  2011年   3篇
  2010年   1篇
  2009年   1篇
排序方式: 共有126条查询结果,搜索用时 31 毫秒
1.
Given their superior penetration depths, photosensitizers with longer absorption wavelengths present broader application prospects in photodynamic therapy (PDT). Herein, Ag2S quantum dots were discovered, for the first time, to be capable of killing tumor cells through the photodynamic route by near-infrared light irradiation, which means relatively less excitation of the probe compared with traditional photosensitizers absorbing short wavelengths. On modification with polydopamine (PDA), PDA-Ag2S was obtained, which showed outstanding capacity for inducing reactive oxygen species (increased by 1.69 times). With the addition of PDA, Ag2S had more opportunities to react with surrounding O2, which was demonstrated by typical triplet electron spin resonance (ESR) analysis. Furthermore, the PDT effects of Ag2S and PDA-Ag2S achieved at longer wavelengths were almost identical to the effects produced at 660 nm, which was proved by studies in vitro. PDA-Ag2S showed distinctly better therapeutic effects than Ag2S in experiments in vivo, which further validated the enhanced regulatory effect of PDA. Altogether, a new photosensitizer with longer absorption wavelength was developed by using the hitherto-unexplored photodynamic function of Ag2S quantum dots, which extended and enhanced the regulatory effect originating from PDA.  相似文献   
2.
The properties of eumelanin‐like particles (EMPs) and pheomelanin‐like particles (PMPs) in regulating the process of amyloid formation of amyloid‐beta 42 (Aβ42) were examined. EMPs and PMPs are effective both in interfering with amyloid aggregation of Aβ42 and in remodeling matured Αβ42 fibers. The results suggest that some (but not all) molecular species consisting of melanin‐like particles (MPs) are responsible for their inhibiting property toward amyloid formation, and the influence is likely manifested by long‐range interactions. Incubating preformed Aβ42 fibers with catechols or MPs leads to the formation of mesh‐like, interconnected Aβ42 fibers encapsulated with melanin‐like material. MPs are kinetically more effective than catechol monomers in this process, and a detailed investigation reveals that 4,5‐dihydroxyindole, a major intermediate in the formation of melanin‐like species, and its derivatives are mainly responsible for remodeling amyloid fibers.  相似文献   
3.
Mesoporous core–shell nanostructures with controllable ultra-large open channels in their nanoshells are of great interest. However, soft template-directed cooperative assembly to mesoporous nanoshells with highly accessible pores larger than 30 nm, or even above 50 nm into macroporous range, remains a significant challenge. Herein we report a general approach for precisely tailored coating of hierarchically macro-/mesoporous polymer and carbon shells, possessing highly accessible radial channels with extremely wide pore size distribution from ca. 10 nm to ca. 200 nm, on diverse functional materials. This strategy creates opportunities to tailor the interfacial assembly of irregular mesostructured nanounits on core materials and generate various core–shell nanomaterials with controllable pore architectures. The obtained Fe,N-doped macro-/mesoporous carbon nanoshells show enhanced electrochemical performance for the oxygen reduction reaction in alkaline condition.  相似文献   
4.
In this work, we prepared amino-modified halloysite nanotubes (PEI-DHNTs) via the co-deposition of self-polymerized dopamine and polyethylenimine (PEI) on the surface of nanotubes, which was confirmed by X-ray photoelectron spectroscopy (XPS) and Thermogravimetric analysis (TGA). A series of composite proton exchange membranes (PEMs) were prepared by incorporating PEI-DHNTs and phosphotungstic acid (HPW) into sulfonated poly(ether ether ketone) (SPEEK). It was found that both PEI-DHNTs and HPW were well dispersed in the polymer matrix, exhibiting excellent filler-matrix compatibility. The composite membranes demonstrated enhanced proton conductivity, reaching as high as 0.078 S cm−1 with 33.3 wt.% HPW loading, which was ~90% higher than that of SPEEK control membrane. Such improvement was mainly attributed to the strong acid–base pairs formed by PEI-DHNT with both SPEEK and HPW, which shortened proton hopping distance and created more continuous proton conduction pathways. Furthermore, the membrane conductivity remained almost constant after 1 year's immersion in liquid water, indicating the successful immobilization of HPW in the composite membranes.  相似文献   
5.
Melanin-like nanomaterials have found application in a large variety of high economic and social impact fields as medicine, energy conversion and storage, photothermal catalysis and environmental remediation. These materials have been used mostly for their optical and electronic properties, but also for their high biocompatibility and simplicity and versatility of preparation. Beside this, their chemistry is complex and it yields structures with different molecular weight and composition ranging from oligomers, to polymers as well as nanoparticles (NP). The comprehension of the correlation of the different compositions and morphologies to the optical properties of melanin is still incomplete and challenging, even if it is fundamental also from a technological point of view. In this minireview we focus on scientific papers, mostly recent ones, that indeed examine the link between composition and structural feature and photophysical and photochemical properties proposing this approach as a general one for future research.  相似文献   
6.
聚多巴胺还原高锰酸钾制备二氧化锰阵列纳米管   总被引:1,自引:1,他引:0  
以通过水热法在石英玻璃片表面合成的ZnO纳米棒为模板,在其表面生成聚多巴胺薄膜,然后与KMnO4反应,制备了MnO_2阵列纳米管。经表征发现,制备的MnO_2纳米管形态良好,在基底表面的附着力强;所制备的MnO_2为非晶型。由于ZnO模板易合成、易去除、形态好,且聚多巴胺薄膜的生成方法也很简便易行,使得该制备MnO_2纳米管阵列的方法具有简便、快捷、适用性广等的特性,对MnO_2新形态纳米结构的构建具有一定的启示作用。  相似文献   
7.
A new multiple monolithic fiber solid‐phase microextraction using a polydopamine‐based monolith as the extraction medium is proposed. The monolith was synthesized by facile in situ copolymerization of N‐methacryldopamine and dual cross‐linkers (divinylbenzene/ethylenedimethacrylate) in the presence of N ,N‐dimethylformamide. The effect of the contents of N‐methacryldopamine and porogen in the polymerization mixture on the extraction performance was investigated thoroughly. A series of characterization studies was performed to validate the structure and properties of the monolith. The prepared multiple monolithic fibers were used for the extraction of triazine herbicides in environmental water samples. After the optimization of the extraction parameters, a convenient, sensitive, cost‐effective, and environmentally friendly method for the determination of trace triazine herbicides in water samples was developed by coupling multiple monolithic fibers solid‐phase microextraction with high‐performance liquid chromatography and diode array detection. The results indicated that the limits of detection and quantification for the target compounds were 0.031–0.14 and 0.10–0.45 μg/L, respectively. Good precision and reproducibility were obtained with the relative standard deviations below 10%. The developed method was applied to the analysis of the triazine herbicides in different water samples (lake, river, and farmland waters). The recoveries of the method were in the range between 79.6 and 117%.  相似文献   
8.
In this work, we developed a capillary column modified with zeolitic imidazolate framework‐8 as a novel stationary phase for open‐tubular capillary electrochromatography. To immobilize zeolitic imidazolate framework‐8 onto the inner surface of silica capillary, a bio‐inspired polydopamine functionalization was used to functionalize the capillary surface with polydopamine. First, a polydopamine layer was assembled inside the capillary. Second, due to noncovalent adsorption and covalent reaction ability, polydopamine could attract and anchor zeolitic imidazolate framework‐8 onto the inner surface of capillary. It has been demonstrated that zeolitic imidazolate framework‐8 was successfully grafted on the inner wall of the capillary by scanning electron microscopy, and Fourier transform infrared spectroscopy. The electro‐osmotic flow characteristics of capillaries were also investigated by varying the pH value and acetonitrile content of mobile phase. The zeolitic imidazolate framework‐8 coating not only increased the phase ratio of open‐tubular column, but also improved the interactions between tested analytes and the stationary phase. Three groups of isomers including acidic, basic, and neutral compounds were well separated on the zeolitic imidazolate framework‐8 bonded column, with theoretic plate numbers up to 1.9 × 105 N for catechol. The repeatability of the prepared columns was also studied, and the relative standard deviations for intra‐ and interday runs were less than 5%.  相似文献   
9.
Inspired by the chiral recognition ability of β‐cyclodextrin and the natural adhesive properties of polydopamine under alkaline conditions, in this study, a rapid and in situ modification strategy was developed to fabricate β‐cyclodextrin/polydopamine composite material coated‐capillary columns for open tubular capillary electrochromatography. The results of scanning electron microscopy, FTIR spectroscopy, streaming potential, and electro‐osmotic flow studies indicated that β‐cyclodextrin/polydopamine was successfully fixed on the inner wall of the capillary column. This coating can be achieved within 1 h affording a greatly reduced capillary preparation time. The performance of the β‐cyclodextrin/polydopamine‐coated capillary was validated by the analysis of seven pairs of chiral analytes, namely epinephrine, norepinephrine, isoprenaline, terbutaline, verapamil, tryptophane, carvedilol. Good enantioseparation efficiencies were achieved for all. For three consecutive runs, the relative standard deviations for the migration times of the analytes for intraday, interday, and column‐to‐column repeatability were in the range of 0.41–1.74, 1.03–4.18, and 1.66–8.24%, respectively. Moreover, the separation efficiency of the β‐cyclodextrin/polydopamine‐coated capillary column did not decrease obviously over 90 runs. The strategy should also be feasible to introduce and immobilize other chiral selectors on the inner walls surface of capillary columns.  相似文献   
10.
Herein, a novel L-arginine (L-Arg)-modified polydopamine (PDA)-coated capillary (PDA/L-Arg@capillary) was firstly fabricated via the basic amino-acid-induced PDA co-deposition strategy and employed to constitute a new chiral ligand exchange capillary electrochromatography (CLE-CEC) method for the high-performance enantioseparation of D,L-amino acids (D,L-AAs) with L-Arg as the immobilized chiral ligand coordinating with the central metal ion Zn(II) as running buffer. Assisted by hydrothermal treatment, the robust immobilization of L-Arg on the capillary inner wall could be facilely achieved within 1 h, prominently improving the synthesis efficiency and simplifying the preparation procedure. The successful preparation of PDA/L-Arg coatings in the capillary was systematically characterized and confirmed using several methods. In comparison with bare and PDA-functionalized capillaries, the enantioseparation capability of the presented CLE-CEC system was significantly enhanced. Eight D,L-AAs were completely separated and three pairs were partially separated under the optimal conditions. The prepared PDA/L-Arg@capillary showed good repeatability and stability. The potential mechanism of the greatly enhanced enantioseparation performance obtained by PDA/L-Arg@capillary was also explored. Moreover, the proposed method was further utilized for studying the enzyme kinetics of L-glutamic dehydrogenase, exhibiting its promising prospects in enzyme assays and other related applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号