首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   88篇
  免费   25篇
  国内免费   13篇
化学   116篇
物理学   10篇
  2023年   7篇
  2022年   1篇
  2021年   5篇
  2020年   17篇
  2019年   13篇
  2018年   17篇
  2017年   15篇
  2016年   22篇
  2015年   6篇
  2014年   8篇
  2013年   6篇
  2012年   4篇
  2011年   3篇
  2010年   1篇
  2009年   1篇
排序方式: 共有126条查询结果,搜索用时 140 毫秒
11.
Inspired by the chiral recognition ability of β‐cyclodextrin and the natural adhesive properties of polydopamine under alkaline conditions, in this study, a rapid and in situ modification strategy was developed to fabricate β‐cyclodextrin/polydopamine composite material coated‐capillary columns for open tubular capillary electrochromatography. The results of scanning electron microscopy, FTIR spectroscopy, streaming potential, and electro‐osmotic flow studies indicated that β‐cyclodextrin/polydopamine was successfully fixed on the inner wall of the capillary column. This coating can be achieved within 1 h affording a greatly reduced capillary preparation time. The performance of the β‐cyclodextrin/polydopamine‐coated capillary was validated by the analysis of seven pairs of chiral analytes, namely epinephrine, norepinephrine, isoprenaline, terbutaline, verapamil, tryptophane, carvedilol. Good enantioseparation efficiencies were achieved for all. For three consecutive runs, the relative standard deviations for the migration times of the analytes for intraday, interday, and column‐to‐column repeatability were in the range of 0.41–1.74, 1.03–4.18, and 1.66–8.24%, respectively. Moreover, the separation efficiency of the β‐cyclodextrin/polydopamine‐coated capillary column did not decrease obviously over 90 runs. The strategy should also be feasible to introduce and immobilize other chiral selectors on the inner walls surface of capillary columns.  相似文献   
12.
A new multiple monolithic fiber solid‐phase microextraction using a polydopamine‐based monolith as the extraction medium is proposed. The monolith was synthesized by facile in situ copolymerization of N‐methacryldopamine and dual cross‐linkers (divinylbenzene/ethylenedimethacrylate) in the presence of N ,N‐dimethylformamide. The effect of the contents of N‐methacryldopamine and porogen in the polymerization mixture on the extraction performance was investigated thoroughly. A series of characterization studies was performed to validate the structure and properties of the monolith. The prepared multiple monolithic fibers were used for the extraction of triazine herbicides in environmental water samples. After the optimization of the extraction parameters, a convenient, sensitive, cost‐effective, and environmentally friendly method for the determination of trace triazine herbicides in water samples was developed by coupling multiple monolithic fibers solid‐phase microextraction with high‐performance liquid chromatography and diode array detection. The results indicated that the limits of detection and quantification for the target compounds were 0.031–0.14 and 0.10–0.45 μg/L, respectively. Good precision and reproducibility were obtained with the relative standard deviations below 10%. The developed method was applied to the analysis of the triazine herbicides in different water samples (lake, river, and farmland waters). The recoveries of the method were in the range between 79.6 and 117%.  相似文献   
13.
In this work, we developed a capillary column modified with zeolitic imidazolate framework‐8 as a novel stationary phase for open‐tubular capillary electrochromatography. To immobilize zeolitic imidazolate framework‐8 onto the inner surface of silica capillary, a bio‐inspired polydopamine functionalization was used to functionalize the capillary surface with polydopamine. First, a polydopamine layer was assembled inside the capillary. Second, due to noncovalent adsorption and covalent reaction ability, polydopamine could attract and anchor zeolitic imidazolate framework‐8 onto the inner surface of capillary. It has been demonstrated that zeolitic imidazolate framework‐8 was successfully grafted on the inner wall of the capillary by scanning electron microscopy, and Fourier transform infrared spectroscopy. The electro‐osmotic flow characteristics of capillaries were also investigated by varying the pH value and acetonitrile content of mobile phase. The zeolitic imidazolate framework‐8 coating not only increased the phase ratio of open‐tubular column, but also improved the interactions between tested analytes and the stationary phase. Three groups of isomers including acidic, basic, and neutral compounds were well separated on the zeolitic imidazolate framework‐8 bonded column, with theoretic plate numbers up to 1.9 × 105 N for catechol. The repeatability of the prepared columns was also studied, and the relative standard deviations for intra‐ and interday runs were less than 5%.  相似文献   
14.
A free‐standing polymer brush film with tailored thicknesses based on a colorless polydopamine (PDA) thin layer is prepared and characterized. The surface‐initiated atom transfer radical polymerization (ATRP) of 2‐hydroxyethyl methacrylate (HEMA) is performed on a PDA layer with thickness of ca. 6 nm, which generated an optically transparent and colorless free‐standing PHEMA brush film (1.5 cm × 1.5 cm). Because the cross‐linked PDA layer is used as the base for the polymer brushes, the reported method does not require cross‐linking the polymer brushes. The free‐standing film thicknesses of ≈16–75 nm are controlled by simply changing the ATRP reaction time. The results show that the free‐standing PHEMA brush film transferred onto a plate exhibits a relatively smooth surface and is stable in any solvent.

  相似文献   

15.
The properties of eumelanin‐like particles (EMPs) and pheomelanin‐like particles (PMPs) in regulating the process of amyloid formation of amyloid‐beta 42 (Aβ42) were examined. EMPs and PMPs are effective both in interfering with amyloid aggregation of Aβ42 and in remodeling matured Αβ42 fibers. The results suggest that some (but not all) molecular species consisting of melanin‐like particles (MPs) are responsible for their inhibiting property toward amyloid formation, and the influence is likely manifested by long‐range interactions. Incubating preformed Aβ42 fibers with catechols or MPs leads to the formation of mesh‐like, interconnected Aβ42 fibers encapsulated with melanin‐like material. MPs are kinetically more effective than catechol monomers in this process, and a detailed investigation reveals that 4,5‐dihydroxyindole, a major intermediate in the formation of melanin‐like species, and its derivatives are mainly responsible for remodeling amyloid fibers.  相似文献   
16.
In this work, we prepared amino-modified halloysite nanotubes (PEI-DHNTs) via the co-deposition of self-polymerized dopamine and polyethylenimine (PEI) on the surface of nanotubes, which was confirmed by X-ray photoelectron spectroscopy (XPS) and Thermogravimetric analysis (TGA). A series of composite proton exchange membranes (PEMs) were prepared by incorporating PEI-DHNTs and phosphotungstic acid (HPW) into sulfonated poly(ether ether ketone) (SPEEK). It was found that both PEI-DHNTs and HPW were well dispersed in the polymer matrix, exhibiting excellent filler-matrix compatibility. The composite membranes demonstrated enhanced proton conductivity, reaching as high as 0.078 S cm−1 with 33.3 wt.% HPW loading, which was ~90% higher than that of SPEEK control membrane. Such improvement was mainly attributed to the strong acid–base pairs formed by PEI-DHNT with both SPEEK and HPW, which shortened proton hopping distance and created more continuous proton conduction pathways. Furthermore, the membrane conductivity remained almost constant after 1 year's immersion in liquid water, indicating the successful immobilization of HPW in the composite membranes.  相似文献   
17.
《先进技术聚合物》2018,29(2):767-774
Multi‐wall carbon nanotubes (MWCNTs) and high strength glass fabrics (HSGFs) were modified by polydopamine and polyethyleneimine, respectively. The aim is to improve the friction and wear performance of the synthesized laminate composites in water environment. In this work, polydopamine was used to improve the dispersibility of MWCNTs in phenolic resin matrix, and polyethyleneimine was utilized to enhance the wettability and reactivity of HSGFs. The modified results showed that the dispersibility of MWCNTs treated by polydopamine in water had a distinct improvement in comparison with that of the pristine MWCNTs. Furthermore, it can be clearly observed that good dispersibility can improve the friction and wear performance of the laminate composites. After functionalizing HSGFs by polyethyleneimine, the laminate composites exhibited excellent interfacial bonding, also greatly enhancing the friction and wear properties of the composites.  相似文献   
18.
A versatile, bottom‐up approach allows the controlled fabrication of polydopamine (PD) nanostructures on DNA origami. PD is a biosynthetic polymer that has been investigated as an adhesive and promising surface coating material. However, the control of dopamine polymerization is challenged by the multistage‐mediated reaction mechanism and diverse chemical structures in PD. DNA origami decorated with multiple horseradish peroxidase‐mimicking DNAzyme motifs was used to control the shape and size of PD formation with nanometer resolution. These fabricated PD nanostructures can serve as “supramolecular glue” for controlling DNA origami conformations. Facile liberation of the PD nanostructures from the DNA origami templates has been achieved in acidic medium. This presented DNA origami‐controlled polymerization of a highly crosslinked polymer provides a unique access towards anisotropic PD architectures with distinct shapes that were retained even in the absence of the DNA origami template.  相似文献   
19.
Polydopamine (PDA), which is biodegradable and is derived from naturally occurring products, can be employed as an electrode material, wherein controllable partial oxidization plays a key role in balancing the proportion of redox‐active carbonyl groups and the structural stability and conductivity. Unexpectedly, the optimized PDA derivative endows lithium‐ion batteries (LIBs) or sodium‐ion batteries (SIBs) with superior electrochemical performances, including high capacities (1818 mAh g?1 for LIBs and 500 mAh g?1 for SIBs) and good stable cyclabilities (93 % capacity retention after 580 cycles for LIBs; 100 % capacity retention after 1024 cycles for SIBs), which are much better than those of their counterparts with conventional binders.  相似文献   
20.
A cytocompatible method of surface‐initiated, activator regenerated by electron transfer, atom transfer radical polymerization (SI‐ARGET ATRP) is developed for engineering cell surfaces with synthetic polymers. Dopamine‐based ATRP initiators are used for both introducing the ATRP initiator onto chemically complex cell surfaces uniformly (by the material‐independent coating property of polydopamine) and protecting the cells from radical attack during polymerization (by the radical‐scavenging property of polydopamine). Synthetic polymers are grafted onto the surface of individual yeast cells without significant loss of cell viability, and the uniform and dense grafting is confirmed by various characterization methods including agglutination assay and cell‐division studies. This work will provide a strategic approach to the generation of living cell–polymer hybrid structures and open the door to their application in multitude of areas, such as sensor technology, catalysis, theranostics, and cell therapy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号