首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2202篇
  免费   668篇
  国内免费   358篇
化学   2437篇
晶体学   95篇
力学   46篇
综合类   13篇
数学   5篇
物理学   632篇
  2024年   3篇
  2023年   34篇
  2022年   73篇
  2021年   81篇
  2020年   148篇
  2019年   117篇
  2018年   103篇
  2017年   98篇
  2016年   215篇
  2015年   174篇
  2014年   145篇
  2013年   256篇
  2012年   203篇
  2011年   136篇
  2010年   160篇
  2009年   144篇
  2008年   152篇
  2007年   157篇
  2006年   150篇
  2005年   115篇
  2004年   102篇
  2003年   105篇
  2002年   30篇
  2001年   28篇
  2000年   28篇
  1999年   24篇
  1998年   20篇
  1997年   44篇
  1996年   33篇
  1995年   44篇
  1994年   19篇
  1993年   17篇
  1992年   16篇
  1991年   8篇
  1990年   7篇
  1989年   8篇
  1988年   5篇
  1987年   4篇
  1986年   3篇
  1985年   3篇
  1984年   6篇
  1983年   4篇
  1982年   2篇
  1981年   2篇
  1979年   1篇
  1970年   1篇
排序方式: 共有3228条查询结果,搜索用时 15 毫秒
1.
为提升n型叉指背接触(IBC)太阳电池的光电转换效率,采用丝网印刷硼浆和高温扩散的方式形成选择性发射极结构,研究了硼扩散和硼浆印刷工艺对电池发射极钝化性能和接触性能的影响。实验结果表明,在硼扩散沉积时间和退火时间一定的条件下,硼扩散通源(BBr3)流量为100 mL/min,沉积温度为830 ℃,退火温度为920 ℃时,发射极轻掺杂(p+)区域的隐开路电压达到710 mV,暗饱和电流密度为12.2 fA/cm2。发射极局部印刷硼浆湿重为220 mg时,经过高温硼扩散退火,重掺杂(p++)区域的隐开路电压保持在683 mV左右,该区域方块电阻仅46 Ω/□,金属接触电阻为2.3 mΩ·cm2. 采用该工艺方案制备的IBC电池最高光电转换效率达到24.40%,平均光电转换效率达到24.32%,相比现有IBC电池转换效率提升了0.28个百分点。  相似文献   
2.
Dong-Yang Liu 《中国物理 B》2022,31(12):128104-128104
Regulation of oxygen on properties of moderately boron-doped diamond films is fully investigated. Results show that, with adding a small amount of oxygen (oxygen-to-carbon ratio < 5.0%), the crystal quality of diamond is improved, and a suppression effect of residual nitrogen is observed. With increasing ratio of O/C from 2.5% to 20.0%, the hole concentration is firstly increased then reduced. This change of hole concentration is also explained. Moreover, the results of Hall effect measurement with temperatures from 300 K to 825 K show that, with adding a small amount of oxygen, boron and oxygen complex structures (especially B3O and B4O) are formed and exhibit as shallow donor in diamond, which results in increase of donor concentration. With further increase of ratio of O/C, the inhibitory behaviors of oxygen on boron leads to decrease of acceptor concentration (the optical emission spectroscopy has shown that it is decreased with ratio of O/C more than 10.0%). This work demonstrates that oxygen-doping induced increasement of the crystalline and surface quality could be restored by the co-doping with oxygen. The technique could achieve boron-doped diamond films with both high quality and acceptable hole concentration, which is applicable to electronic level of usage.  相似文献   
3.
We develop the chemistry of boron difluoride hydrazone dyes (BODIHYs) bearing two aryl substituents and explore their properties. The low-energy absorption bands (λmax=427–464 nm) of these dyes depend on the nature of the N-aryl groups appended to the BODIHY framework. Electron-donating and extended π-conjugated groups cause a redshift, whereas electron-withdrawing groups result in a blueshift. The title compounds were weakly photoluminescent in solution and strongly photoluminescent as thin films (λPL=525–578 nm) with quantum yields of up to 18 % and lifetimes of 1.1–1.7 ns, consistent with the dominant radiative decay through fluorescence. Addition of water to THF solutions of the BODIHYs studied causes molecular aggregation which restricts intramolecular motion and thereby enhances photoluminescence. The observed photoluminescence of BODIHY thin films is likely facilitated by a similar molecular packing effect. Finally, cyclic voltammetry studies confirmed that BODIHY derivatives bearing para-substituted N-aryl groups could be reversibly oxidized (Eox1=0.62–1.02 V vs. Fc/Fc+) to their radical cation forms. Chemical oxidation studies confirmed that para-substituents at the N-aryl groups are required to circumvent radical decomposition pathways. Our findings provide new opportunities and guiding principles for the design of sought-after multifunctional boron difluoride complexes that are photoluminescent in the solid state.  相似文献   
4.
The B3NO2 six-membered heterocycle (1,3-dioxa-5-aza-2,4,6-triborinane=DATB), comprising three different non-carbon period 2 elements, has been recently demonstrated to be a powerful catalyst for dehydrative condensation of carboxylic acids and amines. The tedious synthesis of DATB, however, has significantly diminished its utility as a catalyst, and thus the inherent chemical properties of the ring system have remained virtually unexplored. Here, a general and facile synthetic strategy that harnesses a pyrimidine-containing scaffold for the reliable installation of boron atoms is disclosed, giving rise to a series of Pym-DATBs from inexpensive materials in a modular fashion. The identification of a soluble Pym-DATB derivative allowed for the investigation of the dynamic nature of the B3NO2 ring system, revealing differential ring-closing and -opening behaviors depending on the medium. Readily accessible Pym-DATBs proved their utility as efficient catalysts for dehydrative amidation with broad substrate scope and functional-group tolerance, offering a general and practical catalytic alternative to reagent-driven amidation.  相似文献   
5.
采用基于第一性原理的密度泛函理论(DFT)和局域密度近似(LDA)方法,优化计算得到碳纳米管(CNT),硼原子取代碳原子及其吸附氖原子前后系统的几何结构,能量,电子能带和态密度。结果显示,碳纳米管的能带结构与石墨的层状几何结构相似,能量的变化只在kz=0和kz=0.5平面之间沿着c轴方向出现。B原子取代C原子使价带和导带分别分裂为两个和三个能带。对Ne原子的吸附使价带能量沿着c轴方向升高并导致Fermi面附近的态密度下降。Ne原子的吸附在谷位H最稳定,顶位A其次。C-C间σ键的弯曲使Ne原子吸附在桥位b1比桥位b2处更为稳定。Ne原子在管外的吸附均为放热过程,而管内则为吸热过程。结构分析表明Ne原子对C原子有排斥作用,对B原子却具有吸引作用。B原子取代C原子的位置略凸出于CNT的管壁之外,使Ne原子的吸附能增加。  相似文献   
6.
The development of novel, tumor-selective and boron-rich compounds as potential agents for use in boron neutron capture therapy (BNCT) represents a very important field in cancer treatment by radiation therapy. Here, we report the design and synthesis of two promising compounds that combine meta-carborane, a water-soluble monosaccharide and a linking unit, namely glycine or ethylenediamine, for facile coupling with various tumor-selective biomolecules bearing a free amino or carboxylic acid group. In this work, coupling experiments with two selected biomolecules, a coumarin derivative and folic acid, were included. The task of every component in this approach was carefully chosen: the carborane moiety supplies ten boron atoms, which is a tenfold increase in boron content compared to the l-boronophenylalanine (l-BPA) presently used in BNCT; the sugar moiety compensates for the hydrophobic character of the carborane; the linking unit, depending on the chosen biomolecule, acts as the connection between the tumor-selective component and the boron-rich moiety; and the respective tumor-selective biomolecule provides the necessary selectivity. This approach makes it possible to develop a modular and feasible strategy for the synthesis of readily obtainable boron-rich agents with optimized properties for potential applications in BNCT.  相似文献   
7.
As a new type of quantum dots (QDs), hexagonal boron nitride quantum dots (BNQDs) exhibit promising potential in the applications of disease diagnosis, fluorescence imaging, biosensing, metal ion detection, and so on, because of their remarkable chemical stability, excellent biocompatibility, low cytotoxicity, and outstanding photoluminescence properties. However, the large-scale fabrication of homogeneous BNQDs still remains challenging. In this article, the properties and common fabrication methods of BNQDs are summarized based on the recent research progress. Then, the corresponding yields, morphologies, and fabrication mechanisms of these as-obtained BNQDs are discussed in detail. Moreover, the applications of these as-obtained BNQDs in different fields are also discussed. This article is expected to inspire new methods and improvements to achieve large-scale fabrication of homogeneous BNQDs, which will enable their practical applications in future.  相似文献   
8.
利用热丝化学气相沉积法(HFCVD)在碳化硅基底上制备金刚石薄膜,采用场发射扫描电子显微镜、拉曼光谱仪、原子力显微镜研究了在不同甲烷浓度条件下制备的金刚石薄膜表面形貌及物相组成,在干摩擦条件下通过往复式摩擦磨损实验测试并计算了已制备金刚石薄膜的摩擦系数和磨损率,结合物相分析及摩擦磨损实验结果分析了甲烷浓度的改变对金刚石薄膜摩擦磨损性能的影响。结果表明,由于甲烷气体含量的升高,金刚石薄膜结晶质量下降,薄膜由微米晶向纳米晶转变。摩擦磨损实验结果显示:3%甲烷浓度条件下制备的金刚石薄膜耐磨性较好,磨损率为2.2×10-7 mm3/mN;5%甲烷浓度条件下制备的金刚石薄膜摩擦系数最低(0.032),磨损率为5.7×10-7 mm3/mN,制备的金刚石薄膜的耐磨损性能相比于碳化硅基底(磨损率为9.89×10-5 mm3/mN)提升了两个数量级,显著提高了碳化硅基底的耐磨性。  相似文献   
9.
We established a gas-phase, elementary reaction model for chemical vapor deposition of silicon carbide from methyltrichlorosilane (MTS) and H2, based on the model developed at Iowa State University (ISU). The ISU model did not reproduce our experimental results, decomposition behavior of MTS in the gas phase in an environment with H2. Therefore, we made several modifications to the ISU model. Of the reactions included in existing models, 236 were lacking in the ISU model, and thus were added to the model. In addition, we modified the rate constants of the unimolecular reactions and the recombination reactions, which were treated as a high-pressure limit in the ISU model, into pressure-dependent rate expressions based on the previous reports (to yield the ISU+ model), for example, H2(+M) → H + H(+M), but decomposition behavior remained poorly reproducible. To incorporate the pressure dependencies of unimolecular decomposition rate constants, and to increase the accuracies of these constants, we recalculated the rate constants of five unimolecular decomposition reactions of MTS using the Rice-Ramsperger-Kassel-Marcus method at the CBS-QB3 level. These chemistries were added to the ISU+ model to yield the UT2014 model. The UT2014 model reproduced overall MTS decomposition. From the results of our model, we confirmed that MTS mainly decomposes into CH3 and SiCl3 at the temperature around 1000°C as reported in the several studies.  相似文献   
10.
Triarylboranes that exhibit p–π* conjugation serve as versatile building blocks to design n-type organic/polymer semiconductors. A series of new molecular acceptors based on triarylborane is reported here. These molecules are designed with a boron atom that bears a bulky 2,4,6-tri-tert-butylphenyl (Mes*) substituent at the core and strong electron-withdrawing 2-(3-oxo-2,3-dihydroinden-1-ylidene)malononitrile (IC) units as the end-capping groups that are linked to the core by bithiophene bridges. Butyl or butoxy groups are introduced to the bithiophene units to tune the optoelectronic properties. These molecules show nearly planar backbones with highly localized steric hindrance at the core, low LUMO/HOMO energy levels, and broad absorption bands spanning the visible region, which are all very desirable characteristics for use as electron acceptors in organic solar cell (OSC) applications. The attachment of butyl groups to the bithiophene bridges brings about a slightly twisted backbone, which in turn promotes good solubility and homogeneous donor/acceptor blend morphology, whereas the introduction of butoxy groups leads to improved planarity, favorable stacking in the film state, and a greatly reduced band gap. OSC devices based on these molecules exhibit encouraging photovoltaic performances with power conversion efficiencies reaching up to 4.07 %. These results further substantiate the strong potential of triarylboranes as the core unit of small molecule acceptors for OSC applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号