首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   182篇
  免费   4篇
  国内免费   3篇
化学   164篇
力学   1篇
综合类   1篇
数学   6篇
物理学   17篇
  2023年   32篇
  2022年   7篇
  2021年   4篇
  2020年   6篇
  2019年   3篇
  2018年   2篇
  2017年   5篇
  2016年   1篇
  2015年   4篇
  2014年   10篇
  2013年   15篇
  2012年   11篇
  2011年   11篇
  2010年   5篇
  2009年   10篇
  2008年   7篇
  2007年   7篇
  2006年   16篇
  2005年   7篇
  2004年   4篇
  2003年   5篇
  2002年   4篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1995年   1篇
  1993年   2篇
  1991年   1篇
  1989年   2篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1981年   1篇
排序方式: 共有189条查询结果,搜索用时 211 毫秒
1.
2.
An off‐line two‐dimensional high‐speed counter‐current chromatography method combined with gradient and recycling elution mode was established to isolate terpenoids and flavones from the leaves of Andrographis paniculata (Burm. f.) Nees. By using the solvent systems composed of n‐hexane/ethyl acetate/methanol/water with different volume ratios, five compounds including roseooside, 5,4′‐dihydroxyflavonoid‐7‐O‐β‐d ‐pyranglucuronatebutylester, 7,8‐dimethoxy‐2′‐hydroxy‐5‐O‐β‐d ‐glucopyranosyloxyflavon, 14‐deoxyandrographiside, and andrographolide were successfully isolated. Purities of these isolated compounds were all over 95% as determined by high‐performance liquid chromatography. Their structures were identified by UV, mass spectrometry, and 1H NMR spectroscopy. It has been demonstrated that the combination of off‐line two‐dimensional high‐speed counter‐current chromatography with different elution modes is an efficient technique to isolate compounds from complex natural product extracts.  相似文献   
3.
The Wittig reaction is a key step in industrial processes to synthesise large quantities of vitamin A and various other important chemicals that are used in daily life. This article presents a pathway to achieve the Wittig reaction in a solid network. A highly porous triphenylphosphine-based polymer was applied as a solid Wittig reagent that undergoes, in a multi-step cycle, in total six post-synthetic modifications. This allowed for regeneration of the solid Wittig reagent and reuse for the same reaction cycle. Of particular industrial relevance is that the newly developed material also enables a simple way of separating the product by filtration. Therefore, additional costly and difficult separation and purification steps are no longer needed.  相似文献   
4.
Polyethylene (PE) is the most widely produced synthetic polymer. By installing chemically cleavable bonds into the backbone of PE, it is possible to produce chemically deconstructable PE derivatives; to date, however, such designs have primarily relied on carbonyl- and olefin-related functional groups. Bifunctional silyl ethers (BSEs; SiR2(OR′2)) could expand the functional scope of PE mimics as they possess strong Si−O bonds and facile chemical tunability. Here, we report BSE-containing high-density polyethylene (HDPE)-like materials synthesized through a one-pot catalytic ring-opening metathesis polymerization (ROMP) and hydrogenation sequence. The crystallinity of these materials can be adjusted by varying the BSE concentration or the steric bulk of the Si-substituents, providing handles to control thermomechanical properties. Two methods for chemical recycling of HDPE mimics are introduced, including a circular approach that leverages acid-catalyzed Si−O bond exchange with 1-propanol. Additionally, despite the fact that the starting HDPE mimics were synthesized by chain-growth polymerization (ROMP), we show that it is possible to recover the molar mass and dispersity of recycled HDPE products using step-growth Si−O bond formation or exchange, generating high molecular weight recycled HDPE products with mechanical properties similar to commercial HDPE.  相似文献   
5.
《印度化学会志》2023,100(1):100843
Waste management is become one of the world's most pressing issues. Plastic is one of the most widely utilised materials in the modern world. Plastic manufacturing and usage have risen globally in recent decades due to its low weight and outstanding mechanical properties. Plastic has a wide range of applications due to such good properties include lightweight, high strength, and extended durability. Because of plastics are non- or low-biodegradable, a vast quantity of plastic waste is generated every day, making waste disposal the most pressing matter globally. Furthermore, improper waste disposal pollutes the environment. An ecologically friendly approach is necessary to locket these issues. One of the solutions is to recycle this sort of garbage. There are many plastic recycling technologies available, however practically all of them have certain restrictions. Chemical recycling of plastic, on the other hand, has been shown to be more efficient than other recycling methods. This article provides a quick overview of chemical recycling of PET post-consumer waste and the synthesis of potentially value-added products such as dye or dyestuffs, bolaform surfactant, bio-degradable polyesters, drug carrier, Metal-organic framework (MOF), bio-degradable polymeric scaffolds, polyurethane foam and coating materials etc.  相似文献   
6.
Gavin O. Jones 《Tetrahedron》2019,75(14):2047-2055
Quantum chemistry has increasingly become an integral component for the development of homogeneous catalytic processes to form polymers and to break them down. This review examines how quantum chemistry has been utilized to gain insights on mechanisms and selectivities in polymerization and depolymerization reactions by homogeneous catalysts, from some of the earliest uses of theory to the most recent efforts. Key aspects of catalysis by transition-metal catalysts, organocatalytic bases and organic acids will be highlighted.  相似文献   
7.
The aim of study was to evaluate the effectiveness of a new facility for recycling of plastics from granular waste electrical and electronic equipment. The installation consists of two sections, the products of a first tribo-aero-electrostatic separator being subsequently treated in two free-fall electrostatic separators. The tests were performed on a mixture of polycarbonate (PC) and polyamide (PA). Analysis of the purity of the products obtained was performed using a program of image processing in MATLAB. Products of very high purity (roughly 95% for both PC and PA) were obtained at a recovery rate higher than 70%.  相似文献   
8.
通过对全液体空分装置不同流程组织形式进行分析和模拟计算、能耗与投资的比较,根据不同规格的产品要求,进行合适的流程形式选择,以可达到节能降耗的目的。  相似文献   
9.
Thermal degradation of ABS and denitrogenated ABS samples (DABS), prepared by sequential hydrolysis of ABS using PEG/NaOH, has been investigated under inert gas and at atmospheric pressure in a temperature range between 40 and 700 °C, by means of TGA, TGA-IR, and TGA-MS, to study the link between original structure of DABS and eventual pyrolysis. For DABS, thermal decomposition begins at the side groups of -CONH2 and/or -COOH, resulting in a lower initial degradation temperature of DABS (around 330 °C) relative to ABS (372.5 °C). Moreover, less HCN and acrylonitrile evolve from the DABS samples, while the evolution of CO2 starts earlier and becomes more important, in line with the decreased number of -CN groups and the increased number of -COOH functional groups due to hydrolysis. The results from thermo-analytical experiments were confirmed by batch pyrolysis tests: the nitrogen content of oil produced from DABS pyrolysis is much lower, compared with that from ABS, proving that effective denitrogenation of ABS prior to pyrolysis is beneficial to the quality of pyrolysis oil.  相似文献   
10.
The design of molecularly selective interfaces can lead to efficient electrochemically-mediated separation processes. The fast growing development of electroactive materials has resulted in new electroresponsive adsorbents and membranes, with enhanced selectivity, higher uptake capacities, and improved energy performance. Here, we review progress on the interfacial design for electrochemical separations, with a focus on chemical and biological applications. We discuss the development of new electrode materials and the underlying mechanisms for selective molecular binding, highlighting areas of growing interest such as metal recovery, waste recycling, gas purification, and protein separations. Finally, we emphasize the need for integration between molecular level interface design and electrochemical engineering for the development of more efficient separation processes. We envision that electrochemical separations can play a key role towards the electrification of the chemical industry and contribute towards new approaches for process intensification.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号