首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   1篇
  国内免费   17篇
化学   27篇
物理学   4篇
  2024年   1篇
  2023年   6篇
  2022年   4篇
  2021年   7篇
  2020年   1篇
  2019年   3篇
  2018年   4篇
  2017年   1篇
  2016年   2篇
  2013年   1篇
  2010年   1篇
排序方式: 共有31条查询结果,搜索用时 101 毫秒
1.
采用溶剂热法制备出具有尺寸可调、分散性好、亲水性和超顺磁性的亚微米Fe3O4磁球,并考察了不同表面活性剂、反应时间和反应温度的影响。分别采用XRD、FE-SEM、FTIR、超导量子干涉仪(SQUID)对其结构、形貌、表面性质及磁性进行了表征。结果表明,产物为立方结构、具有单分散性的Fe3O4亚微米球,粒径在140~360nm可调。所得Fe3O4亚微米球在室温条件下的磁滞回线表现出超顺磁性,矫顽力为零。不同表面活性剂对粒径大小和磁饱和强度有一定的影响,但对其形貌和晶相结构无影响。随着反应时间的延长和反应温度的提高,颗粒粒径有逐渐减小的趋势。  相似文献   
2.
以高中阶段知识为基础,简述了扫描电子显微镜、透射电子显微镜等电镜技术的发展和基本原理,并以实际应用案例介绍了电镜技术在纳米科学领域的应用,最后给出了电镜技术的未来发展前景。  相似文献   
3.
随着全球工业的发展,大量有机污染物排放到水中,已经威胁到人类健康.自1972年Fujishima和Honda发现TiO_2半导体材料可在光照下分解水以来,光催化技术作为一种新型污水处理方法引起广泛重视.近几十年来,光催化已被广泛研究,已成为水体净化领域最有前途的方法之一.TiO_2光催化剂由于具有无毒、耐腐蚀、高稳定和低成本等特点,在光催化领域受到广泛关注,是最具有开发前景的光催化材料之一.然而,TiO_2的禁带较宽,只能吸收仅占太阳光4%的紫外光部分,这严重限制了TiO_2光催化材料对太阳光的有效应用.最新研究结果表明,适量缺陷的存在可以拓展TiO_2对可见光的响应,从而通过提高其对太阳光的利用效率来有效提升TiO_2的光催化活性.因此,研究半导体缺陷与其光催化剂性能的关系,对于提升光催化污染物降解性能具有重要意义.本工作采用水热法和溶胶-凝胶法分别制备了具有氧缺陷的和无缺陷的TiO_2,用于研究氧缺陷对TiO_2光催化活性的影响.所制备的氧缺陷TiO_2纳米材料为浅蓝色,光的吸收波长向可见光区(~420 nm)拓展.拉曼光谱和X射线光电子能谱(XPS)测试均证明溶胶-凝胶法制备的TiO_2中氧空缺位的浓度低于水热合成TiO_2的氧空缺位浓度.光化学测试结果表明,氧缺陷TiO_2在模拟太阳光下的光电流响应增强,这是由于氧缺陷的引入导致能带隙内出现了新的电子态,使得禁带宽度变窄.在光降解亚甲基蓝(MB)的实验中,氧缺陷TiO_2材料表现出更高的光催化活性.根据密度泛函理论(DFT)计算和荧光光谱测试结果,讨论了氧缺陷TiO_2的光催化机理.  相似文献   
4.
首先以纳米羟基磷灰石(n-HA)、聚醚醚酮(PEEK)、壳聚糖(CS)为原材料进行复合,制得n-HA/PEEK/CS复合材料;然后采用聚乙烯吡咯烷酮(PVP)/NaCl作为致孔剂对复合材料进行致孔,载入抗生素类药物红霉素(EM),制备出一种新型多孔载药复合骨修复材料n-HA/PEEK/CS/EM。通过傅里叶红外光谱(FT-IR)、扫描电镜(SEM)、力学测试、紫外-可见分光光度计(UVVis)表征了该复合材料的形貌结构、力学性能及药物缓释性能。结果表明:当m(PVP)∶m(NaCl)=1∶6时,可以得到孔隙率为51.6%、抗压强度为6.98MPa的n-HA/PEEK/CS/EM复合材料;当CS的质量分数由0增加到30%时,最大药物释放质量浓度由39.8μg/mL增加到52.0μg/mL;药物载入后无新化学键生成;材料形成了三维立体多孔结构,孔径为5~50μm,有利于营养物质的运输及细胞、组织的长入。  相似文献   
5.
主链型液晶聚合物(main-chain liquid crystalline polymers,MCLCPs)分子链易取向的特性赋予其优异的性能,在航空、电子等领域具有不可替代的地位。其中芳香族聚酯酰胺(aromatic polyesteramides,APEAs)作为重要的一类,解决了单一化学结构的聚芳酯须在较高温度下加工、聚芳酰胺分子间氢键带来的刚性过大、易吸水等问题,具有可观的应用前景。目前相关研究中的分子链结构与聚合方法繁多,但缺少系统性的梳理。本文按照酯键与酰胺键的生成次序,将APEAs的合成分为同时生成、易生成无规链结构的一步缩聚法与先后分别制备、可得到有规序列的两步缩聚法。另外,不同结构单体的反应特性决定了适用的聚合方法与条件不同,因此本文一并整理了其聚合反应的影响因素。在此基础上,梳理了主链结构与性能的关系,展望未来的发展方向,以期为新型APEAs的合成提供借鉴与参考。  相似文献   
6.
7.
将锌钴双掺杂的金属有机框架(MOFs)纳米颗粒(ZnCo-ZIF)与聚丙烯腈(PAN)混溶形成前驱体溶液, 通过静电纺丝与高温热化学反应, 获得了一种多孔碳纳米纤维负载的钴单原子催化剂(A-Co@PCFs). 高温热解时, 聚丙烯腈分解碳化形成碳纳米纤维主体, MOFs纳米颗粒结构坍塌伴随锌组分的挥发, 在纤维表面形成了丰富的多级孔结构. 由于碳纳米纤维和孔道结构的双重限域作用, 使钴组分不能聚集成钴纳米颗粒, 而是形成高度分散的钴单原子. 电化学测试结果表明, 该钴单原子催化剂可将CO2电还原为CO, 在-0.66 V(vs. RHE)下, CO的法拉第效率可达94%. 并且经过60 h的耐久性测试, 其催化性能没有明显的性能衰减, 显示出较高的稳定性. A-Co@PCFs的高活性与高稳定性可归因于材料的多孔结构和高度分散的钴原子, 这也使其具有代替贵金属催化剂的可能性.  相似文献   
8.
从广涛  卢怡君 《物理化学学报》2022,38(6):2106008-22
液流电池因为具有高储能效率,低成本,以及可解耦的能源储存和功率输出设计,被广泛认为是适用于大型储能的首选技术。但是长期以来,液流电池在电网中的大规模部署一直受限于现有的金属基活性材料的高成本和较低的储能密度。因其潜在的低成本,丰富的原材料来源,高度可调的分子结构,具有氧化还原活性的有机分子作为潜在的液流电池活性材料,受到越来越多的关注。本文首先介绍了液流电池的工作机制,以提升非水系有机液流电池的储能密度的策略为重点,总结了非水系液流电池中有机活性材料的研究进展。并讨论了这些策略存在的问题和未来的发展方向。  相似文献   
9.
以胰高血糖素样肽-1(GLP-1)与多肽的混合体系作为研究对象,利用粗粒化分子模拟对其作用模式进行研究。结果显示,3种混合体系都有利于GLP-1形成螺旋结构。其中,两性离子五肽VPKEG具有较强亲水性,在GLP-1周围形成疏松的保护层;而两性离子五肽VPREG与GLP-1形成较多静电作用;对照组五肽VPGAG具有较强疏水性,形成致密聚集体,未能给GLP-1提供足够保护。赖氨酸、谷氨酸组合让两性离子五肽VPKEG具备了恰当的亲疏水性和静电作用,既能维持GLP-1构象,也可避免被免疫蛋白识别,赋予其"隐身"特性。  相似文献   
10.
硅(Si)由于其具有超高理论比容量而成为最有前途的下一代锂离子电池的负极材料。但是,锂离子的嵌入和脱出会造成硅体积的巨大变化,进而导致Si的粉化,致使电极容量产生不可逆的衰减,严重限制了硅基材料的广泛应用。然而过去的大量报道表明,聚合物粘结剂可以有效克服由于硅微粒的体积膨胀而产生的“孤岛效应”,保持电极在充放电过程的完整性,进而提高电极的电化学性能。对聚合物粘结剂按结构分类,可以将其大致分为4类,即线型、支化型、交联网络型及共轭型。不同分子结构的粘结剂用作硅基负极粘结剂时,电极表现出不同的电化学性能。特别是设计出具有多种分子结构的聚合物粘结剂,极大地促进了硅基负极的实际应用。通过对比具有不同分子结构的聚合物粘结剂用于硅基负极取得的效果,可以清晰地得到最有效的分子结构,对未来硅基负极聚合物粘结剂的开发提供思路。最后,本文提出了下一代聚合物粘结剂的设计方向,以促进其向可大规模应用和工业化生产的方向发展。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号