首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2240篇
  免费   187篇
  国内免费   300篇
化学   1159篇
晶体学   24篇
力学   156篇
综合类   8篇
数学   740篇
物理学   640篇
  2024年   8篇
  2023年   60篇
  2022年   98篇
  2021年   95篇
  2020年   96篇
  2019年   58篇
  2018年   69篇
  2017年   99篇
  2016年   100篇
  2015年   97篇
  2014年   143篇
  2013年   232篇
  2012年   243篇
  2011年   242篇
  2010年   188篇
  2009年   173篇
  2008年   105篇
  2007年   134篇
  2006年   99篇
  2005年   73篇
  2004年   39篇
  2003年   36篇
  2002年   43篇
  2001年   48篇
  2000年   26篇
  1999年   37篇
  1998年   11篇
  1997年   7篇
  1996年   16篇
  1995年   12篇
  1994年   7篇
  1993年   4篇
  1992年   9篇
  1991年   3篇
  1990年   3篇
  1989年   4篇
  1988年   1篇
  1987年   1篇
  1985年   3篇
  1984年   1篇
  1980年   3篇
  1979年   1篇
排序方式: 共有2727条查询结果,搜索用时 15 毫秒
1.
2.
Yuan  Gonglin  Li  Pengyuan  Lu  Junyu 《Numerical Algorithms》2022,91(1):353-365
Numerical Algorithms - The BFGS method, which has great numerical stability, is one of the quasi-Newton line search methods. However, the global convergence of the BFGS method with a Wolfe line...  相似文献   
3.
Two nickel complexes, [Ni(tpen)](ClO4)2.0.5CH3COCH3 ( 1 ) and [Ni(tpbn)](ClO4)2 ( 2 ), of tetrapyridyl ligands N,N,N′,N′-tetrakis(2-pyridyl-methyl)-1,2-ethanediamine (tpen) and N,N,N′,N′-tetrakis(2-pyridyl-methyl)-1,4-butanediamine (tpbn) were prepared and their catalysis for water oxidation reaction (WOR) studied. In 0.1 M phosphate buffer solution (PBS) of pH 8.0, complex 1 is a homogeneous molecular catalyst with an overpotential of ~440 mV and a Faradaic efficiency of 89%. At pH ≥ 9.0, complex 1 degraded gradually during the catalytic process and formed NiOx composite (nickel oxide with general formula NixOyHz) active for WOR. In contrast, complex 2 deteriorated under measured conditions (pH 8.0–12.0) and formed NiOx composite active for WOR. The NiOx composite derived from 1 in 0.1 M PBS at pH 11.0 showed an activity with an overpotential of ~500 mV, a Tafel slope of ~90 mV/decade and a Faradaic efficiency of 97%. Mechanisms were proposed for water oxidation catalyzed by 1 and 2 . This work revealed that the catalytic activity of the nickel complexes was related to the flexibility of the tetrapyridyl ligands and the adaptability of the coordination sphere of the nickel(II) center.  相似文献   
4.
Mathematical Physics, Analysis and Geometry - In this paper, we develop the dressing method to study the modified Camassa-Holm equation with the help of reciprocal transformation and the associated...  相似文献   
5.
Czechoslovak Mathematical Journal - The irregularity of a graph G = (V, E) is defined as the sum of imbalances ∣du ? dv∣ over all edges uv ∈ E, where du denotes the degree...  相似文献   
6.
This article investigates the effect of the selection of enrichment functions on the formulation of the Generalized Finite Element Method (GFEM) for the solutions of transient heat conduction problems. We present the study of an a-posteriori error estimate with the aim to show it as a reliable tool for the selection of enrichment functions to efficiently capture the sharp thermal gradients of the solutions. Problems in two- and three-dimensional domains are considered to demonstrate the robustness of the proposed error estimate. Numerical experiments consider two different types of enrichment functions that mimic the solution behaviour and capture the time-varying thermal gradients. The presented study shows that the error estimate is independent of the heuristically selected enrichment functions and can be used for any type of enrichment functions. It is concluded that the proposed error estimate efficiently reflects the errors in the GFEM solutions for both types of enrichment functions and can be used as an effective tool for the selection of more suitable enrichment functions that produce lower errors under the considered thermal conditions.  相似文献   
7.
The friction at the liquid-solid interfaces is widely involved in various phenomena ranging from nanometer to micrometer scales. By the molecular dynamic(MD)simulation, the friction properties of liquid-solid interfaces at the molecular level are calculated via the Green-Kubo relation. It is found that the system size will influence the value of the friction coefficient, especially for the solid surfaces with the larger polar charge. The value of the friction coefficient decreases with the increase in the system size and converges at large system sizes. The large polar charge will lead to a significant friction coefficient. However, the diffusion of water molecules on this surface is almost a constant, indicating that the diffusion coefficient seems to be independent of the system size and polar charge. This work provides insights for the selection of the system size in modeling the frictional properties of hydrophobic/hydrophilic surfaces.  相似文献   
8.
The paper presents the synthesis and catalytic activity of CuFe2O4 nanoparticles. The CuFe2O4 nanoparticles have been prepared by sonochemical route under low power ultrasonic irradiation (UI) and using silent stirring at room temperature only (ST) along with co-precipitation method, without using any additive/capping agent. The synthesized magnetic nanoparticles were successfully used and compared for the synthesis of 4H-chromene-3-carbonitrile derivatives. The CuFe2O4 nanoparticles obtained by sonochemical route exhibit higher catalytic activity because of small size (0.5–5 nm), high surface area (214.55 m2/g), high thermal stability up to 700 °C, recyclability and reusability due to its magnetic characteristics than CuFe2O4 nanoparticles obtained by room temperature silent stirring. The synthesized CuFe2O4 nanoparticles were characterized by FT-IR, SEM–EDX, HR-TEM, XRD, TGA/DTA/DTG, BET, VSM techniques. The present method is of great interest due to its salient features such as environmentally compatible, efficient, short reaction time, chemoselectivity, high yield, cheap, moisture insensitive, green and recyclable catalyst which make it sustainable protocol.  相似文献   
9.
Super-toughened poly(lactic acid) (PLA)/poly(ethylene-co-vinyl acetate) (EVA) blends were prepared via 2,5-dimethyl-2,5-di(tert-butylperoxy)hexane (AD) induced dynamic vulcanization and in situ interfacial compatibilization. The effects of AD on the morphology and properties of PLA/EVA blends were studied using a Brabender torque rheometer, gel content test, scanning electron microscopy (SEM), differential scanning calorimetry (DSC) thermogravimetric analysis (TGA) and mechanical properties test. The torque and gel content demonstrated that EVA and PLA was successfully vulcanized in the presence of free radicals obtained by the decomposition of the 2,5-dimethyl-2,5-di(tert-butylperoxy)hexane (AD). Additionally, the gel content results indicated that, compared with PLA, EVA is more aggressive with free radicals. The SEM revealed that a relatively uniform phase morphology and good interfacial compatibilization were achieved in the dynamically vulcanized PLA/EVA/AD blends. The interfacial reaction and compatibilization between the component polymers resulted in the formation of super-toughened PLA/EVA blended materials.  相似文献   
10.
Efforts to synthesize degradable polymers from renewable resources are deterred by technical and economic challenges; especially, the conversion of natural building blocks into polymerizable monomers is inefficient, requiring multistep synthesis and chromatographic purification. Herein we report a chemoenzymatic process to address these challenges. An enzymatic reaction system was designed that allows for regioselective functional group transformation, efficiently converting glucose into a polymerizable monomer in quantitative yield, thus removing the need for chromatographic purification. With this key success, we further designed a continuous, three-step process, which enabled the synthesis of a sugar polymer, sugar poly(orthoester), directly from glucose in high yield (73 % from glucose). This work may provide a proof-of-concept in developing technically and economically viable approaches to address the many issues associated with current petroleum-based polymers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号