首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  国内免费   5篇
化学   10篇
  2017年   2篇
  2016年   4篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
排序方式: 共有10条查询结果,搜索用时 46 毫秒
1
1.
基于Hg~(2+)与DNA中胸腺嘧啶(T)结合的高度特异性和DNA铜纳米簇的荧光增强性质,构建了一种简便、灵敏检测汞离子的新方法.当Hg~(2+)存在时,聚T单链DNA(P1)通过T-Hg~(2+)-T特异性结合形成双链DNA,Cu~(2+)经抗坏血酸钠还原后生成的中间体Cu+与双链DNA螺旋结构间的氢键部分有强的结合力,促使Cu0附着聚集在双链DNA上形成铜纳米簇,导致体系荧光增强,从而实现对汞离子的高灵敏检测.体系荧光强度与Hg~(2+)浓度的对数值成正比,对Hg~(2+)检测的线性范围为1.0 nmol/L~10μmol/L,检出限达0.4 nmol/L,对湖水样品中Hg~(2+)检测的回收率达到97.2%~106.6%.与传统方法相比,该方法具有无需标记、检出限低及选择性好等优点,可用于环境水体中汞离子的测定.  相似文献   
2.
陈丹  曹忠  刘峰  吴玲  寻艳  何婧琳  肖忠良 《分析化学》2016,(10):1593-1599
以聚二烯二甲基氯化铵( PDDA)为保护剂和还原剂,制备了PDDA功能化的银纳米颗粒( AgNPs),然后与氧化石墨烯( GO)复合,得到 PDDA功能化的立方体银纳米( C-AgNPs)/GO 复合膜,修饰于玻碳电极( GCE)表面,形成C-AgNPs-PDDA/GO/GCE。采用扫描电子显微镜表征了不同修饰膜的形貌,探讨了其对多巴胺( DA)和亚硝酸根( NO-2)的循环伏安行为,发现C-AgNPs-PDDA/GO复合膜对DA和NO-2表现出显著的电催化氧化活性。采用差分脉冲伏安法,修饰电极检测DA的线性范围为0.030~0.300μmol/L和0.300~300μmol/L,检测 NO-2的线性范围为30.0~2300μmol/L,检测下限分别为9.8 nmol/L 和12.6μmol/L (S/N=3)。此电极具有良好的抗干扰性、重现性和稳定性,可用于人体血清样品中DA和NO-2的同时测定,回收率分别为97.4%~104.2%和98.0%~102.8%。与分光光度法比较,两者测定结果一致。  相似文献   
3.
研究了案例教学法在分析化学理论教学中的实践,内容包括案例选材、设计、实施和案例模型评估。案例教学法模式在促进学生扎实学习理论知识的同时,改进学生对于分析化学课程的认知,提高学生的专业技能。案例教学法在分析化学理论教学中的实践可以在教师教学和学生学习之间建立良好的互动关系,并最终改善分析化学课程教学。  相似文献   
4.
采用层层自组装方法,制备了一种基于双抗体夹心层修饰金电极的信号增强电化学生物传感器,即先通过组装L-半胱氨酸、戊二醛,固定c—Myc(9E10)单克隆抗体(C.AbI),形成C.Ab1单抗修饰电极,可识别致癌基因c—myc蛋白;再结合上第二抗体羊抗鼠免疫球蛋白G抗体(c.Ab2),形成C.Ab1/c—myc/C—Ab2双抗夹心修饰电极,响应信号大幅度增强,传感性能优于C—A1单抗修饰电极.通过电化学阻抗和循环伏安行为探讨了双抗夹心法信号增强的机理,其阻抗值与c.myc浓度对数在0.043-430nM范围内成良好的线性关系,线性方程可拟合为Y=10046.10+863.33墨线性相关系数为0.9904,c—myc的最低检测限也降低至25.76pM.该传感器制备简单,选择性、重现性、稳定性和再生性好,在鼠血清样品中测得c—myc的回收率在97.4%-103.7%之间,表明该方法可用于实际肿瘤样品中c—myc的检测,在生物医学领域具有潜在的应用价值.  相似文献   
5.
MWCNTs-rGO/PDDA-AuNPs复合膜修饰电极对莱克多巴胺的灵敏检测   总被引:1,自引:0,他引:1  
采用自组装方法,将聚二烯丙基二甲基氯化铵(PDDA)功能化的金纳米颗粒(Au NPs)负载于多壁碳纳米管(MWCNTs)-还原型氧化石墨烯(r GO)夹层,再涂覆于玻碳电极(GCE)上,制备了纳米复合膜修饰电极MWCNTs-r GO/PDDA-Au NPs/GCE.采用透射电子显微镜(TEM)和紫外-可见光谱(UV-Vis)对修饰膜的形貌及结构进行表征.探讨了其对莱克多巴胺(Rac)的循环伏安行为,结果表明MWCNTs-r GO/PDDA-Au NPs纳米复合物对Rac表现出显著的电催化氧化特性.采用差分脉冲伏安法测得该复合膜修饰电极对Rac检测的线性范围为0.036~4.5μmol/L,检出限为6.35 nmol/L(S/N≥3),且显示出良好的抗干扰能力、稳定性及重现性.采用该方法检测猪血清及猪尿样中的Rac,回收率达95.4%~105.9%,表明该复合膜修饰电极对实际样品中Rac的检测具有潜在应用价值.  相似文献   
6.
将1,4-二硫苏糖醇(DTT)自组装在100 nm厚的平整金膜表面, 形成DTT膜修饰金平板电极(GPE), 构建了一种新颖的简单、 快速测定汞离子的选择性电极分析方法. 通过电化学交流阻抗和循环伏安法探讨了该电极的响应原理, 即固定在Au表面的DTT通过另一端的巯基与汞离子发生强配位作用而吸附结合带正电荷的汞离子, 引起电极表面膜电位的变化, 从而选择性地识别汞离子. 实验结果表明, 该电极在pH=6.0的Tris-HCl缓冲溶液中对汞离子有良好的电位响应性能, 其线性范围为1.0×10-8~1.0×10-3 mol/L, 能斯特响应斜率为(29.62±0.2) mV/-pc(25 ℃), 检出限为5.1×10-9 mol/L. 该汞离子检测电极的响应时间仅为20 s, 且有较好的重现性和稳定性. 通过测定各种离子的选择性系数, 发现Cu2+, Fe2+, Na+, K+, Mg2+, Ba2+, Ca2+, Zn2+, Sn2+, Pb2+, Ag+, Al3+, Fe3+, Ni2+, NO2-, IO3-, BrO3-和ClO3-等离子不干扰该电极对汞离子的检测. 此外, 将该电极用于实际水样中微量汞离子含量的测定, 结果与双硫腙分光光度方法一致, 且回收率为98.20%~101.75%.  相似文献   
7.
以富含胞嘧啶(C)的单链DNA为模板合成银纳米簇,将其作为功能化探针,建立了一种无标记荧光检测S1核酸酶的方法.S1核酸酶可以特异性识别单链DNA,在最适的酶催化反应条件下,可将其降解为单核苷酸或寡核苷酸片段.当S1核酸酶不存在时,富含C的单链DNA可以有效地合成荧光银纳米簇;当S1核酸酶存在时,单链DNA模板被特异性识别并降解,导致无法形成银纳米簇,使体系荧光信号降低.实验结果表明,银纳米簇的荧光强度随着S1核酸酶浓度的增加而降低.在优化的条件下,体系荧光信号(F/F0)与S1核酸酶的浓度在5.0×10-5~4.0×10-3 U/μL范围内呈线性关系,检出限为2.0×10-6 U/μL.该荧光探针选择性好,可用于RPMI 1640细胞培养基中S1核酸酶的检测,回收率达到91.8%~109.5%.  相似文献   
8.
将氧化石墨烯(GO)在玻碳电极(GCE)表面进行直接电化学还原,再组装上纳米金-壳聚糖(AuNPCS)聚阳离子,形成了电化学还原氧化石墨烯/纳米金-壳聚糖(ERGO/AuNP-CS)复合膜修饰的玻碳电极。采用扫描电子显微镜(SEM)表征了不同修饰膜表面的形貌,探讨了其对尿酸(UA)分子的差分脉冲伏安(DPV)行为,发现ERGO/AuNP-CS复合膜对UA分子表现出显著的电催化氧化活性。在0.10 mol/L磷酸盐缓冲溶液(pH=6.5)中,扫速为100 mV/s时,此复合膜修饰电极的DPV响应与UA的浓度在0.05~110μmol/L范围内呈性关系,检测限为12.4 nmol/L(S/N=3)。此修饰电极具有良好的选择性、重现性和稳定性,可应用于人体血清和尿液样品中UA的测定,回收率达到93.8%~104.1%。结果与分光光度法和尿酸酶试剂盒法相符。  相似文献   
9.
利用末端脱氧核苷酸转移酶(TdT)扩增形成聚胸腺嘧啶(T)DNA模板,制备了聚T铜纳米簇(TS-CuNCs),构建了一种用于L-组氨酸(L-His)检测的荧光传感分析新方法.TdT酶在dTTP存在下合成聚T单链DNA核苷酸序列.由于胸腺嘧啶和Cu2+之间的亲合力,聚T单链DNA作为合成铜纳米簇(CuNCs)的模板,加入还原剂后形成CuNCs,荧光强度增强.在L-His存在下,L-组氨酸的咪唑基与Cu2+螯合形成L-His-Cu2+配合物,因而进入聚胸腺嘧啶序列中的Cu2+量减少,使得合成的CuNCs数量减少,导致荧光信号减弱.实验结果表明,体系荧光响应信号与L-His浓度的对数值在5.0×10-9~5.0×10-4 mol/L范围内呈线性关系,检出限达到3.4×10-9 mol/L.本方法用于实际尿液样品中L-组氨酸检测的回收率为97.4%~104.6%,在生物医学及临床诊断中具有潜在应用价值.  相似文献   
10.
采用4种杯芳烃衍生物为吸附涂膜材料, 考察了涂膜石英晶体微天平(QCM)传感器对环境大气中微量乙醇气体的识别性能, 发现C-乙基杯[4]连苯三酚芳烃(3)是识别乙醇气体最有效的活性涂膜材料. 制备了C-乙基杯[4]连苯三酚芳烃·2CH3CH2OH(5)单晶体并进行X射线衍射结构解析, 发现其识别机制是基于超分子主体3与客体乙醇分子之间形成的C-H…π, O-H…π及O-H…O氢键作用. 当涂膜质量为24.70 μg 时, 涂膜QCM传感器对乙醇的响应最灵敏, 达到10.53 Hz/(mg·L-1). 分析了乙醇气体的吸附和解吸附动力学过程, 得到传感器对乙醇气体吸附和解吸附的初速度分别为-0.04600 Hz/s和0.03896 Hz/s. 该方法响应快, 具有选择性、 可逆性、 重现性和稳定性好的优点, 对乙醇样品测定的回收率为94.8% ~105.2%, 与气相色谱法的测定结果一致, 表明该方法可用于生活环境中乙醇气体的检测.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号