首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8254篇
  免费   1200篇
  国内免费   757篇
化学   5181篇
晶体学   143篇
力学   139篇
综合类   50篇
数学   92篇
物理学   4606篇
  2024年   5篇
  2023年   62篇
  2022年   143篇
  2021年   216篇
  2020年   227篇
  2019年   193篇
  2018年   209篇
  2017年   276篇
  2016年   294篇
  2015年   288篇
  2014年   377篇
  2013年   681篇
  2012年   630篇
  2011年   482篇
  2010年   383篇
  2009年   507篇
  2008年   493篇
  2007年   634篇
  2006年   480篇
  2005年   464篇
  2004年   418篇
  2003年   374篇
  2002年   320篇
  2001年   246篇
  2000年   214篇
  1999年   234篇
  1998年   188篇
  1997年   196篇
  1996年   162篇
  1995年   133篇
  1994年   126篇
  1993年   113篇
  1992年   90篇
  1991年   89篇
  1990年   50篇
  1989年   50篇
  1988年   28篇
  1987年   20篇
  1986年   21篇
  1985年   10篇
  1984年   21篇
  1983年   5篇
  1982年   13篇
  1981年   8篇
  1980年   8篇
  1979年   6篇
  1978年   6篇
  1977年   5篇
  1974年   3篇
  1973年   5篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
1.
The high-entropy materials have raised much attention in recent years due to their extraordinary performances in mechanical, catalysis, energy storage fields. Herein, a new type of high-entropy hydroxides (e.g., NiFeCoMnAl(OH)x) that are amorphous and capable of broad solar absorption is reported. A facile one-pot co-precipitation method is employed to synthesize these amorphous high-entropy hydroxides (a-HEHOs) under ambient conditions. The a-HEHOs thus obtained display widely tunable bandgap (e.g., from 2.6 to 1.1 eV) due to their high-entropy and amorphous characteristics, enabling efficient light absorbance and photothermal conversion in the solar regime. Further solar water evaporation measurements show that the a-HEHOs delivered a considerable energy conversion efficiency of 55%, comparable to black titanium oxides that are synthesized using more complex and expensive methods.  相似文献   
2.
An in situ generated oxidation species of nickel quinolinylpropioamide intermediate was produced. Characterization by X-ray absorption near edge structure (XANES) and EPR provides complementary insights into this oxidized nickel species. With aliphatic amides and isocyanides as substrates, a nickel-catalyzed facile synthesis of structurally diverse five-membered lactams could be achieved.  相似文献   
3.
4.
In organic photovoltaics, porphyrins (PPs) are among the most promising compounds owing to their large absorption cross-section, wide spectral range, and stability. Nevertheless, a precise adjustment of absorption band positions to reach a full coverage of the so-called green gap has not been achieved yet. We demonstrate that a tuning of the PP Q- and Soret bands can be carried out by using a computational approach for which substitution patterns are optimized in silico. The most promising candidate structures were then synthesized. The experimental UV/Vis data for the solvated compounds were in excellent agreement with the theoretical predictions. By attaching further functionalities, which allow the use of PP chromophores as linkers for the assembly of metal-organic frameworks (MOFs), we were able to exploit packing effects resulting in pronounced redshifts, which allowed further optimization of the photophysical properties of PP assemblies. Finally, we use a layer-by-layer method to assemble the PP linkers into surface-mounted MOFs (SURMOFs), thus obtaining high optical quality, homogeneous and crystalline multilayer films. Experimental results are in full accord with the calculations, demonstrating the huge potential of computational screening methods in tailoring MOF and SURMOF photophysical properties.  相似文献   
5.
The photovoltaic performance of quantum-dot solar cells strongly depends on the charge-carrier relaxation and recombination processes, which need to be modulated in a favorable way to obtain maximum efficiency. Recently, significant efforts have been devoted to investigate the carrier dynamics of nanocrystal sensitizers, both in solution and deposited on TiO2 photoanodes, with the aim to correlate the excitonics with solar-energy conversion efficiency. This Minireview summarizes some proof of the concepts that efficiency can be directly correlated to the exciton dynamics of quantum-dot solar cells. The presented findings are based on CdSeS alloy, CdSe/CdS core/shell, Au/CdSe nanohybrids, and Mn-doped CdZnSSe nanocrystals, where the favourable excitonic processes are optimized to enhance the efficiency. Future prospects and limitations are addressed as well.  相似文献   
6.
The hexapyrrole-α,ω-dicarbaldehydes 1 a and 1 b were metallated with CuII, NiII, and PdII to give bimetallic complexes where a pair of 3 N+O four-coordinate metal planes are helically distorted and the central 2,2′-bipyrrole subunit adopts a cis or trans conformation. X-ray crystallographic analysis of the bisCu complex revealed a closed form with a cis-2,2′-bipyrrole subunit and an open form with a trans-2,2′-bipyrrole subunit. The bisPd complexes took a closed form both in the solid state and in solution. They are regarded as single helicates of two turns and the energy barrier for the interchange between an M helix and a P helix was remarkably influenced by the bulky 3,3′-substituent of the central 2,2′-bipyrrole subunit. Although the bisNi complexes adopt a closed form in the solid state, they exist as a homohelical open C2-symmetric form or a heterohelical open Ci-symmetric form in solution. A theoretical study suggested that the closed form of 1 a Pd was stabilized by the Pd–Pd interaction. Compound 1 a Pd was reversibly oxidized by one electron at 0.14 V versus ferrocene/ferrocenium (Fc/Fc+) and this oxidized species showed Vis/NIR absorption bands at λ=767 and 1408 nm.  相似文献   
7.
ABSTRACT

Using the two-dimensional (2D) diagonalisation method, the impurity-related electronic states and optical response in a 2D quantum dot with Gaussian confinement potential under nonresonant intense laser field are investigated. The effects of a hydrogenic impurity on the energy spectrum and binding energy of the electron and also intersubband optical absorption are calculated. The obtained numerical results show that the degeneracies of the excited electron states are broken and the absorption spectrum exhibits a redshift with the values of the laser field. The findings indicate a new degree of freedom to tune the performance of novel optoelectronic devices, based on the quantum dots and to control their specific properties by means of intense laser field and hydrogenic donor impurity. Using the same Gaussian confinement model, the electronic properties of a confined electron in the region of a spherical quantum dot are studied under the combined effects of on-centre donor impurity and a linearly polarised intense laser radiation. The three-dimensional problem is used to theoretically model, with very good agreement, some experimental findings reported in the literature related to the photoluminescence peak energy transition.  相似文献   
8.
9.
利用基于密度泛函理论的第一性原理,研究了Cu:Fe:Mg:LiNbO3晶体及对比组的电子结构和光学特性.研究显示,单掺铜或铁铌酸锂晶体的杂质能级分别由Cu 3d轨道或Fe 3d轨道贡献,禁带宽度分别为3.45和3.42 eV;铜、铁共掺铌酸锂晶体杂质能级由Cu和Fe的3d轨道共同贡献,禁带宽度为3.24 eV,吸收峰分别在3.01,2.53和1.36 eV处;Cu:Fe:Mg:LiNbO3晶体中Mg^2+浓度低于阈值或高于阈值(阈值约为6.0 mol%)的禁带宽度分别为2.89 eV或3.30 eV,吸收峰分别位于2.45 eV,1.89 eV或2.89 eV,2.59 eV,2.24 eV.Mg^2+浓度高于阈值,会使吸收边较低于阈值情况红移;并使得部分Fe^3+占Nb位,引起晶体场改变,从而改变吸收峰位置和强度.双光存储应用中可选取2.9 eV作为擦除光,2.5 eV作为读取和写入光,选取Mg^2+浓度达到阈值的三掺晶体在增加动态范围和灵敏度等参量以及优化再现图像的质量等方面更具优势.  相似文献   
10.
《中国化学快报》2020,31(5):1124-1128
In this study,flower-like MoS_2 constructed by nanosheets was synthesized by a simple hydrothermal method.The hydrothermal process was optimized and the effects of hydrothermal condition,including reaction temperature,reaction time and the ratio of Mo source to S source(Mo:S) in precursor,on microwave absorption performances and dielectric properties were investigated.Our results showed that when the reaction temperature was 180℃,the reaction time was 18 h,and the Mo:S was 1:3.5,the synthesized MoS_2 had the best performance:Its minimum reflection loss could reach-55.78 dB,and the corresponding matching thickness was 2.30 mm with a wide effective bandwidth of 5.17 GHz.Further researches on the microwave absorption mechanism revealed that in addition to the destructive interference of electromagnetic waves,various polarization phenomena such as defect dipole polarization were the main reasons for microwave loss.We believe that MoS_2 is a candidate for a practical microwave absorbent.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号