首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5474篇
  免费   266篇
  国内免费   4573篇
化学   9575篇
晶体学   60篇
力学   20篇
综合类   194篇
数学   12篇
物理学   452篇
  2024年   35篇
  2023年   225篇
  2022年   231篇
  2021年   212篇
  2020年   205篇
  2019年   247篇
  2018年   216篇
  2017年   232篇
  2016年   273篇
  2015年   262篇
  2014年   472篇
  2013年   426篇
  2012年   397篇
  2011年   326篇
  2010年   342篇
  2009年   373篇
  2008年   382篇
  2007年   396篇
  2006年   409篇
  2005年   373篇
  2004年   392篇
  2003年   426篇
  2002年   416篇
  2001年   459篇
  2000年   340篇
  1999年   267篇
  1998年   214篇
  1997年   287篇
  1996年   219篇
  1995年   220篇
  1994年   207篇
  1993年   154篇
  1992年   133篇
  1991年   136篇
  1990年   139篇
  1989年   111篇
  1988年   45篇
  1987年   28篇
  1986年   24篇
  1985年   31篇
  1984年   10篇
  1983年   18篇
  1982年   3篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
氮氧化物NO_x(NO和NO_2)对大气的污染日益严重,主要表现为形成酸雨、导致光化学烟雾和产生温室效应等,严重危害人类健康.氨气选择性催化还原(NH_3-SCR)NO_x是目前最有效的固定源NO_x消除技术.工业中常用的催化剂主要是V_2O_5-WO_3/TiO_2,但其活性组分V_2O_5有毒,且存在氧化能力较强和操作温度窗口过窄等缺点.开发新型环境友好的非钒基NH_3-SCR催化剂体系己成为NO_x催化净化领域的研究热点.CeO_2在稀土市场中占有很大比重且相对廉价,同时还具有优异的氧化-还原及储氧性能,因此开发Ce基SCR脱硝催化剂具有非常好的发展前景.对于NH_3-SCR反应,催化剂必须同时具有酸性位和氧化还原中心.酸性位有利于还原剂NH_3的吸附与活化,而氧化还原中心可以促使氧化剂和还原剂之间发生反应.对于低温SCR催化剂,表面酸性适中即可,氧化还原性能起决定作用;而对于中高温SCR催化剂,不仅要提高其表面酸性以保证足够的NH_3吸附量,同时还要控制其表面氧化性不宜太强,否则在高温段NH_3氧化,N_2选择性下降,NO转化率降低.CeO_2具有一定碱性以及优异的氧化还原性能,因此在高温阶段CeO_2催化剂上易发生NH_3深度氧化,高温NH_3-SCR活性差,温度窗口窄.为了拓宽CeO_2基催化剂的温度窗口,改善其催化性能,有必要调整CeO_2的氧化还原性能和酸碱性能.过渡金属磷酸盐或焦磷酸盐具有特殊的表面酸性和氧化还原性,被广泛应用于多种催化反应.考虑到过渡金属磷酸盐或焦磷酸盐表面同时具有酸性位和氧化还原中心,因而可用于NH_3-SCR反应.最近本课题组通过水热法制备了一种环境友好的Ce-P-O催化剂,该催化剂在较宽的温度范围(300-550℃)内表现出较高的催化NO转化能力,同时具有较强的抗碱和耐硫能力,显示出很好的应用前景.此外,硫酸盐和镍盐修饰能有效改善铈锆固溶体催化剂的NH_3-SCR性能:镍修饰增强了铈锆固溶体的Lewis酸性,有利于提高催化剂的低温活性,而硫酸盐改性提高了催化剂的Bronsted酸性,因此有利于催化剂高温下吸附NH_3,抑制了NH_3的过度氧化.另外,磷酸盐修饰能提高铈锆固溶体催化剂NH_3-SCR反应活性.然而,有关催化剂结构系统表征鲜见报道,催化剂的构效关系阐述不够详细.本文采用浸渍法将不同量的H_3PO_4负载于CeO_2上制备了H_3PO_4修饰的CeO_2催化剂,发现H_3PO_4修饰能显著改善CeO_2催化剂的NH_3-SCR性能.本文对催化剂结构进行了系统表征,详细探讨了H_3PO_4促进作用的原因.NH_3-SCR活性测试显示,H_3PO_4修饰后,催化剂活性显著提高,部分抑制了高温时CeO_2催化剂上NH_3的直接氧化,提高了SCR反应的选择性,从而拓宽了温度窗口.X射线衍射、红外光谱和拉曼光谱表征结果发现,随着H_3PO_4负载量增加,样品中CeO_2相逐渐减少,而新相如CeP_2O_7和Ce(PO_3)_4等逐渐增多,多磷酸根阴离子可能是表面酸性增强的关键因素.NH_3程序升温脱附和吸附吡啶红外光谱结果表明,随着H_3PO_4修饰量的增加,样品的酸强度逐渐增大,Lewis酸性逐渐减弱至消失,而Bronsted酸性逐渐增强.增强的Bronsted酸性可能归因于H_3PO_4修饰后样品表面不断增加的P-OH基团.相对于Lewis酸,Bronsted酸性位氧化能力更弱,可以抑制高温下NH_2(ads)继续脱氢,避免了NH_3深度氧化.程序升温还原测试结果表明,H_3PO_4修饰后,各还原峰向高温偏移,偏移量随H_3PO_4负载量增加而增加.这说明H_3PO_4修饰后CeO_2的氧化还原能力降低,抑制了高温下NH_3的过度氧化.因此,H_3PO_4的修饰使得CeO_2催化剂高温NH_3-SCR活性和N_2选择性大幅提高.综上所述,H_3PO_4-CeO_2样品优异的脱硝催化活性可能归因于H_3PO_4修饰后催化剂酸性,尤其是Bronsted酸性的增强以及氧化还原性的降低.  相似文献   
992.
甲醇制丙烯:最重要的催化剂及其性能   总被引:1,自引:0,他引:1  
由于世界范围内原油缺乏和丙烯需求量增长,在甲醇转化制烃类的不同路线中,甲醇制丙烯(MTP)过程得到发展.本文讨论了催化剂结构对MTP工艺条件的影响以及分子筛酸性、晶粒尺寸、中孔特性和拓扑结构等因素对催化催化MTP反应活性和选择性的影响.  相似文献   
993.
开发了一种由金和钯催化π-活化由炔醇合成呋喃衍生物的集成方法.该合成策略是最显著的特点适用于带环辛基的底物,其适用范围比之前报道的有很大扩展.在Sonogashira反应条件下,由相应底物可直接得到环辛基呋喃.Pd在这些反应中起到2个重要作用:底物发生偶联反应的关键催化剂;通过π-活化促进炔醇中间体成环反应.该方法在一步合成3-碘呋喃反应中作用很突出,使通过偶联法进一步官能团化成为可能.我们还将AuBr_3用于多米诺成环/C-H键活化反应和无环前体的成环反应.本文结果表明,在该类成环反应中金和钯催化剂相辅相成.  相似文献   
994.
山梨醇是重要的生物基平台化合物,其选择加氢裂解制备乙二醇和1,2-丙二醇等低碳二元醇,是一个具有重要科学意义和应用前景的催化过程.山梨醇氢解反应涉及C-C键和C-O键等化学键的裂解,裂解选择性尤为关键.通常情况下,添加NaOH,KOH,Ca(OH)2,CaO和Ba(OH)2等碱性物质可增加糖醇转化率和二元醇选择性,但也会生成大量乳酸等副产物.研究乳酸的生成途径,探索抑制乳酸生成的方法,对于提高山梨醇加氢裂解制备低碳二元醇的选择性具有重要意义.本文以Ni/C催化剂上山梨醇加氢裂解反应为模型反应,研究了碱性化合物添加剂类型及其用量对乳酸生成的影响.根据加氢裂解机理分析可知,糖醇氢解主要涉及以下关键步骤:在碱的存在下,多元醇在金属催化剂上发生脱氢反应生成相应的羰基中间体;然后,羰基中间体在碱性介质中通过逆羟醛缩合反应,发生C-C键断裂.因此,在糖醇氢解反应和C-C键断裂中,添加碱性化合物将会不可避免地生成乳酸.结果表明,以NaOH和Ca(OH)2为添加剂时,山梨醇加氢裂解生成乳酸的选择性分别为15.1%和8.9%.而以La(OH)3为添加剂时,生成乳酸的选择性仅为0.1%.以Ca(OH)2和La(OH)3为添加剂时反应具有高活性,山梨醇转化率均可达到99%以上.分别以Ca(OH)2和La(OH)3为添加剂,研究了碱性添加剂用量对山梨醇氢解反应的影响.结果表明,以Ca(OH)2为添加剂时,山梨醇转化率和乳酸选择性均随着Ca(OH)2用量增加而增加;当OH-投料量为11.06 mmol时,乳酸选择性可达11.7%.而以La(OH)3为添加剂时,即使La(OH)3用量仅为0.08 mmol时,山梨醇转化率也可高达99%;继续增加La(OH)3用量,对乳酸的选择性影响不大;当OH-投料量为11.06 mmol时,乳酸选择性也只有0.3%.对山梨醇加氢裂解反应分析可知,与Ca(OH)2相比,La(OH)3添加剂可使C2和C4产物的总选择性从20.0%增加到24.5%.上述结果表明La(OH)3可高效促进山梨醇加氢转化.为了探索Ca(OH)2或La(OH)3为添加剂时山梨醇加氢裂解产物分布不同的本质原因,以Ni/C催化催化的丙酮醛加氢转化为探针反应,探讨了乳酸形成的可能路径.结果表明,丙酮醛可能是山梨醇氢解反应的关键中间体之一.在仅以Ni/C催化加氢时,丙酮醛容易被转化为1,2-丙二醇;当只存在碱性添加剂时,丙酮醛可发生重排并被转化为乳酸主产物,这可能是乳酸生成的主要原因.进一步研究表明,以Ca(OH)2为添加剂时,乳酸选择性是以La(OH)3为添加剂时的1.9倍.在Ni/C催化剂和碱性添加剂共存时,由于碱性添加剂的区别,则会得到不同选择性的1,2-丙二醇和乳酸.结果表明,通过丙酮醛催化加氢可得到1,2-丙二醇,也可以通过重排反应生成乳酸;这两类反应是竞争性的.在山梨醇氢解反应中,以Ca(OH)2为添加剂时,加氢反应和重排反应均可发生.而以La(OH)3为添加剂时,丙酮醛加氢反应占主导,仅生成微量乳酸.该研究对提高山梨醇催化加氢裂解选择性具有参考意义.  相似文献   
995.
与块体材料相比,功能复合材料表现了更加优异的性能,而且比其中任何单一组分的性能都好,因此在催化、锂离子电池等领域得以广泛研究.通常情况下,在复合材料的制备中金属或金属氧化物粒子要求能够以足够小的粒径在基底上均匀分散,并实现活性组分负载量的可控.据报道,很多方法可以将金属(或氧化物)活性组分引入到载体之中,比如水热/溶剂热、水解、热分解、化学气相沉积等,但这些方法均存在如下缺点.第一,为了获得满意的负载量和可控包覆,碳基底需要预氧化处理使其表面含有丰富的含氧官能团.例如,由于碳纳米管自身的相容性和加工性较差,需要硝酸预氧化处理;石墨烯也需要预处理为石墨烯氧化物然后再进行第二组分的负载.但是,剧烈的氧化处理条件不可避免地造成对碳sp~2结构和电子特性的破坏,并且增加了繁杂的后续处理过程.第二,金属组分前驱体在基底上负载不完全,易形成自由粒子聚集在溶液中,从而降低活性组分的有效利用.第三,传统方法中由于使用水、乙醇等表面张力大的极性溶剂,导致粒子结晶再生长,形成的颗粒尺寸大,对催化剂会降低活性表面积及催化效率;对于电池材料会增加电极/电解液的接触面积,增加锂离子的扩散距离及电池充电过程的内部应力.而且,有机溶剂由于粘度大,不利于金属纳米粒子在基底上的均匀分散及合成过程的绿色化.因此,我们利用资源丰富,廉价的二氧化碳作为绿色溶剂,研究了二氧化碳膨胀的乙醇体系中金属(氧化物)纳米粒子在碳基底上均匀负载的方法.由于超临界二氧化碳具有独特的低粘度、"零"表面张力、高扩散能力、以及物性参数随温度和压力可调等特点,可以使金属(氧化物)前驱体不受液体毛细作用的限制在孔道中快速、均一地分散,保证孔结构稳定,对多孔复合材料的加工和制备表现了巨大的优势.同时,超临界二氧化碳的抗溶剂能力也能够有效降低乙醇和水引起的溶剂效应,从而降低纳米粒子之间的聚集.此外,通过改变前驱体的浓度可以精确调控表面组分的负载量.更重要的是,碳基底可以直接利用制备碳基复合材料,无需任何预处理及表面活性剂参与,避免了前处理对基底的形貌和电子特性的破坏.本综述首先介绍了超临界二氧化碳膨胀乙醇体系的属性,讨论了碳基复合材料在该体系中的形成机理.然后分别介绍了零维碳球、一维碳纳米管、二维石墨烯、三维多孔碳材料作为基底形成的一系列金属(氧化物)复合材料,及这些材料在催化和锂离子电池领域中的应用.最后,对超临界二氧化碳沉积方法的应用进行了总结和展望.  相似文献   
996.
1,4-二氢-2H-3,1-苯并噁嗪-2-酮作为一种重要的母体骨架广泛存在于生物活性化合物中。此外,在有机合成中它可作为经受热脱羧生成氮杂-邻二亚甲基苯的有效工具。文献报道的合成1,4-二氢-2H-3,1-苯并噁嗪-2-酮的方法有:2-氨基苄醇与光气或其替代物反应,钯或硫催化的2-氨基苄醇与 CO的羰基化反应,钯或硒催化的2-硝基苄醇与 CO的羰基化反应,钯催化的2-叠氮基苄醇直接羰基化反应或2-叠氮基苄醇的氮杂-维悌希(aza-Wittig)/杂累积多烯调节的环合反应,苯并呋喃酮的胺解-霍夫曼重排反应,硼氢化锂还原1,2-二氢-3,1-苯并噁嗪-2,4-二酮,以及2-羟甲基苯基氨基甲酸酯的分子内亲核取代反应。上述合成方法存在原料毒性高或成本高且来源不便、原子经济性低、有腐蚀性废物或 CO2排放、CO利用率低、催化剂昂贵且难以循环使用、反应步骤较多等缺陷,因此发展绿色、高效、经济的合成新途径具有重要意义。本文采用廉价易得的非金属硒作催化剂,用 CO作羰基化试剂, O2作氧化剂,通过硒催化2-氨基苄醇的氧化羰基化反应直接合成了目标产物1,4-二氢-2H-3,1-苯并噁嗪-2-酮。通过考察反应时间、反应温度、催化剂硒的用量、助催化剂种类及用量、CO和 O2的比例及溶剂种类等影响因素,得到了优化的反应条件,目标产物收率最高可达87%。实验证实,该 Se/CO催化体系具有相转移催化功能。反应前硒以粉末形式存在于反应体系中,为多相体系;反应开始后,硒粉参与羰基化反应形成可溶活性化合物,从而成为均相体系;反应完成后硒粉经氧化可重新从反应介质中沉淀析出,又变为多相体系。因此,该体系既实现了高效的均相催化反应,又便于催化剂分离回收,且回收的硒可重复使用,其催化活性基本保持不变。结合相关文献,我们提出了该反应的机理:在助催化剂三乙胺存在下,硒首先与 CO反应原位生成羰基硒,然后羰基硒先后接受2-氨基苄醇中氨基和羟基的亲核进攻生成目标产物,同时释放出硒化氢,硒化氢再被 O2氧化为硒,从而进入下一轮催化循环反应。总之,我们成功开发出一条绿色、高效、经济的1,4-二氢-2H-3,1-苯并噁嗪-2-酮合成新途径。用廉价易得且能循环使用的硒替代贵金属钯作催化剂,用 CO替代剧毒光气或其衍生物作羰基化试剂, O2作氧化剂,硒催化的2-氨基苄醇氧化羰基化反应可顺利进行,以87%的良好收率得到目标产物,具有成本低、原子经济性高、CO利用率高、步骤简短、无腐蚀性废物或温室气体 CO2排放、无光气使用及环境相对友好等优点。  相似文献   
997.
作为空气污染物的主要成分之一,挥发性有机化合物(VOCs)会极大地破坏生态环境并损害人体健康。在众多消除 VOCs的方法中,吸附法由于操作简单、成本低廉的优势而在工业上得以广泛应用。催化燃烧法则因去除效率高,适用范围广且无二次污染等优点被认为是 VOCs消除最有效的手段之一。
  目前,活性炭是最常用的 VOCs吸附剂,但存在再生困难、抗湿性差、易燃等诸多问题。与活性炭等常规吸附剂相比,沸石分子筛作为 VOCs吸附剂其主要优势在于:(1)沸石分子筛的疏水性可调,通过调控分子筛骨架的硅铝比可以调节分子筛的亲疏水性,高硅铝比的沸石分子筛有着优异的疏水性能,从而可以有效降低在一定湿度条件下水对 VOCs分子的竞争吸附;(2)均一的孔径分布可以有效地进行分子识别,从而使吸附剂对VOCs的选择性吸附性大大提高;(3)沸石分子筛一般由硅铝构成,本身不可燃且水热稳定性好,因此能够与微波加热等其他手段相结合以降低吸附剂重生能耗,提高操作安全性;(4)沸石分子筛比表面积大,吸附容量高,是作为蜂窝转轮吸附技术中吸附剂的理想材料,而该技术是目前工业大规模消除VOCs的研究热点。因此,沸石分子筛由于其独特的性质,被视为一种简单高效、选择性好的VOCs吸附剂。现阶段,催化燃烧VOCs所使用的催化剂常用金属氧化物作为载体,但是金属氧化物比表面积相对较小且孔道结构不均一,因此严重影响了催化剂对VOCs的催化燃烧效率,限制了催化燃烧活性的提高。而与金属氧化物载体相比,沸石分子筛材料具有均一的孔道结构以及相对较大的比表面积等优点,而将具有较好吸附选择性和吸附容量的沸石分子筛作为载体,负载活性组分后可以实现催化催化燃烧性能的显著提高,从而成为VOCs催化燃烧的理想催化剂。
  本文综述了目前沸石分子筛材料作为吸附剂和催化剂载体的负载型催化剂消除各类VOCs的研究进展。对于沸石分子筛作为VOCs吸附剂,我们小结了影响其吸附容量和吸附选择性的因素,发现分子筛的孔道大小和阳离子类型与VOCs的吸附情况密切相关。在此基础上,进一步简单介绍了分子筛蜂窝吸附转轮技术的研究现状。对于沸石分子筛作为催化剂载体,我们总结了其用于各类VOCs催化燃烧的研究情况,如烷烃类、芳烃类和醛类等。探究了催化性能的影响因素及相应的催化机理,发现分子筛的孔道结构、阳离子类型、硅铝比等都会显著影响沸石分子筛负载型催化剂的催化活性。最后,探讨了沸石分子筛应用于VOCs消除目前所存在的问题,同时展望了该领域未来的研究和发展方向。  相似文献   
998.
水污染问题已成为影响我国可持续发展的关键问题之一,为有效提高现有污水处理的效率及其回收利用,各种催化氧化技术受到了广泛的关注。目前发展的各类高级氧化技术在实际的应用过程中明显受到了氧化剂的利用率、催化剂的浸出、寿命及成本等问题的严重限制。因此基于新的理念、发展新的催化氧化技术仍然受到广泛的关注。
  最近几年,利用碳酸氢盐活化过氧化氢,应用于有机废水的降解逐渐受到环境催化领域的关注。碳酸氢盐本身是一种低毒性、广泛存在于环境及生物体系的化学物质,通过它活化过氧化氢产生过碳酸氢盐氧化剂,该氧化剂能够直接氧化有机物。同时,在各种过渡金属催化剂的存在下,通过该过碳酸氢盐可以形成氧化能力更强的各种自由基(如羟基自由基等) 及高价态的过渡金属离子参与有机废水的降解。虽然传统认为碳酸盐及碳酸氢盐对高级氧化法降解有机废水不利,原因是认为它们能捕捉羟基自由基,形成氧化能力更低的碳酸根自由基。现有的研究已充分表明,较低浓度的碳酸氢盐能够加快有机废水的氧化降解,而且通常比单独使用过氧化氢效率更高,这些新的发现已明显突破了传统意义上对碳酸氢盐作用的理解。更为重要的是,在微量碳酸氢盐的存在下,其产生的微碱性环境极大地消除了负载型氧化物催化剂在废水降解过程中的金属离子流失、从而极大地延长了催化剂的寿命。该缺点是各种基于过渡金属氧化物催化剂的高级氧化技术难以广泛推广的关键性挑战,原因是随着氧化降解的进行,废水体系由于有机酸的生成而逐渐酸化,进而引发氧化物催化剂的酸溶而流失。在这点上,碳酸氢盐活化过氧化氢系统由于其天然的微碱性环境体现出了其明显的优势。
  本文即是在本课题组工作基础上,对该领域内国内外研究进展加以总结,以期获得国内外同行的进一步关注。综述的主要内容包括:(1)碳酸氢氧活化过氧化氢的相关知识介绍,(2)均相碳酸氢氧活化过氧化氢降解有机废水的研究进展,(3)基于金属氧化物催化剂的碳酸氢氧活化过氧化氢降解有机废水的研究进展,和(4)碳酸氢盐在其他高级氧化技术中的应用。虽然基于碳酸氢氧活化过氧化氢降解有机废水的研究还处于早期探索阶段,还有很多基础科学问题如降解机理等值得进一步探索,期望通过该综述的介绍能够让同行对碳酸氢氧活化过氧化氢降解有机废水有一个比较全面的了解,进而推动该研究方向的发展,为有机废水的催化处理提供新的机会。  相似文献   
999.
多组分反应(MCRs)是通过一锅法同时或先后加入3种或3种以上起始原料合成目标产物的过程,具有原子经济性高、化学键构造效率高和反应选择性高等优点,而且可以避免中间体分离和纯化,从而减少废物产生,节省时间,简化分离纯化过程.MCRs由于其灵活性和高效性超过了传统多步合成方法,已成为构建结构新颖的多样性有机分子的新兴工具,尤其是在新药开发中具有广泛应用.吡喃[2,3-c]并吡唑是一类重要杂环化合物,是许多重要新兴药物的关键内核,这些药物具有抑制人类Chk1激酶活性、抗肿瘤活性、止痛镇痛活性、抗菌活性和抗炎活性等.目前已有通过三组分反应(3CRs)、四组分反应(4CRs)乃至五组分反应(5CRs)合成吡喃[2,3-c]并吡唑的文献报道.所用催化剂大多为无机或有机碱性催化剂,所报道的多组分反应或多或少存在一些不足,如反应条件苛刻、所使用试剂昂贵和不易获得、使用定量的催化剂、产率不理想及操作繁琐等.牛血清白蛋白(BSA)是一种来源于牛,在生物体系中没有天然催化功能的廉价易得的非酶转运蛋白.由于生物催化剂如蛋白质、酶及完整细胞等具有催化效率高、选择性高和操作简单等优点,将生物催化剂用于催化有机反应已成为化学领域的研究热点.在这些生物催化剂中,BSA能催化一系列有机反应,包括还原反应、Knoevenagel缩合、aldol缩合、Morita-Baylis-Hillman反应和Biginelli反应等.考虑到吡喃[2,3-c]并吡唑衍生物的重要性以及BSA催化有机反应的多样性,我们设想利用生物催化剂BSA催化4CRs合成吡喃[2,3-c]并吡唑衍生物,即在45℃下,于90%乙醇水溶液中,催化量BSA催化乙酰乙酸乙酯、水合肼、丙二腈和羰基化合物反应.反应完成后,产物经乙醇重结晶纯化,BSA可回收重复使用,重复使用5次,催化活性基本保持不变.在优化条件下,合成了22个吡喃[2,3-c]并吡唑衍生物或及其螺环衍生物.迄今为止,该法尚未见文献报道.总之,我们发展了一种新颖和有效的BSA催化构建结构多样性吡喃[2,3-c]并吡唑衍生物的绿色方法.该法具有环境友好、反应条件温和、反应时间短、产率高和操作简单等优点.同时,该法底物适应范围广,可以使用各种羰基化合物为起始原料,这使它成为一种高效实用的合成结构多样性吡喃[2,3-c]并吡唑衍生物的方法.  相似文献   
1000.
王俊  周瑞莎  宋江锋 《化学通报》2016,79(10):921-928,904
含铋金属氧簇结构的多样性和多功能性使其在诸多领域有着非常广泛的应用。本文总结了已报道的50多个含铋金属氧簇化合物,根据Bi(Ⅲ)在金属氧簇中所充当的作用,可将含铋金属氧簇分成4大类:(1)Bi(Ⅲ)作为中心杂原子;(2)Bi(Ⅲ)作为取代原子;(3)Bi(Ⅲ)作为桥联原子;(4)Bi(Ⅲ)作为终端原子,分别对其合成和结构的发展现状进行总结。同时,介绍了含铋金属氧簇在催化、磁性、光学、药物等方面的应用,并对其前景进行了展望。通过本文可以很好了解含铋金属氧簇的合成、性能及发展,对多金属氧簇的拓展研究有重要意义。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号