首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79244篇
  免费   6571篇
  国内免费   5047篇
化学   23448篇
晶体学   1809篇
力学   3550篇
综合类   359篇
数学   18384篇
物理学   43312篇
  2022年   159篇
  2021年   317篇
  2020年   626篇
  2019年   939篇
  2018年   894篇
  2017年   607篇
  2016年   448篇
  2015年   417篇
  2014年   1078篇
  2013年   1659篇
  2012年   1167篇
  2011年   1712篇
  2010年   2309篇
  2009年   6834篇
  2008年   7887篇
  2007年   6375篇
  2006年   5815篇
  2005年   3978篇
  2004年   3800篇
  2003年   3999篇
  2002年   4727篇
  2001年   3692篇
  2000年   3496篇
  1999年   3329篇
  1998年   2745篇
  1997年   1911篇
  1996年   1729篇
  1995年   2205篇
  1994年   2133篇
  1993年   1595篇
  1992年   1103篇
  1991年   833篇
  1990年   675篇
  1989年   606篇
  1988年   565篇
  1987年   405篇
  1986年   193篇
  1985年   947篇
  1984年   619篇
  1983年   489篇
  1982年   641篇
  1981年   794篇
  1980年   722篇
  1979年   560篇
  1978年   583篇
  1977年   539篇
  1976年   540篇
  1975年   317篇
  1974年   355篇
  1973年   463篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
The threshold voltage is a key parameter in the silicon MOSFETS design and operation. In this paper, we study the factors that contribute to the changes of threshold voltage of thin-film LPCVD polysilicon transistors when varying the thickness of the active layer.The results show that the threshold voltage depends strongly on the film thickness. For high thicknesses, the threshold voltage is shown to be determined by the trapped holes at grain boundaries. The variation of this parameter with film thickness can be attributed to inter-granular trap states density variation in the film.For low thicknesses, a simple electrostatic model of the study structure, associated with a numerical method of solving 2D-Poisson's equations, shows that the changes of threshold voltage of polysilicon TFT depends on grain-boundary properties and charge-coupling between the front and back gates. Based on this consideration, the usual threshold voltage expression is modified. The results so obtained are compared with the available experimental data, which show a satisfactory match thus justifying the validity of the proposed relation.  相似文献   
992.
ZrO2-embedded carbon fibers were prepared for use as an electromagnetic interference (EMI) shielding material by electrospinning and heat treatment methods. Structural changes were observed in the ZrO2 and in the carbon structures by XRD and Raman spectroscopy, respectively. During heat treatment, XRD analysis results revealed a transition from a monoclinic structure to a tetragonal structure in ZrO2 and a graphitization in the structural formation of carbon fibers was observed by Raman spectroscopy. It was observed that these structural changes in the ZrO2 and the carbon fibers improved the real and imaginary permittivities by a factor of more than 3.5. The EMI shielding efficiency (SE) improved along with the permittivity with higher treatment temperatures and greater amounts of embedded ZrO2; the highest average EMI SE achieved was 31.79 dB in 800-8500 MHz. The heat treatment played an important role in the improvements in the permittivity and in the EMI SE because of the heat-induced structural changes of the ZrO2-embedded electrospun carbon fibers. We suggest that the EMI shielding of the fibers is primarily due to the absorption of electromagnetic waves, which prevents secondary EMI by reflection of electromagnetic waves.  相似文献   
993.
The structure of the defect pyrochlore NaW2O6+δ·nH2−zO after ion exchange with K, Rb, Sr or Cs for Na has been investigated using thermal analysis, solid-state nuclear magnetic resonance, laboratory X-ray and neutron diffraction methods. Neutron diffraction studies show that both the A-type cations (Na+, K+, Rb+, and/or Cs+) and the water molecules reside within the channels that form in the 111 direction of the W2O6 framework and that these strongly interact. The analytical results suggest that the water and A-type cations compete for space in the tunnels within the W2O6 pyrochlore framework, with the total number of water molecules and cations being approximately constant in the six samples investigated. The interplay between the cations and water explains the non-linear dependence of the a lattice parameter on the choice of cation. It appears that the ion-exchange capacity of the material will be controlled by the amount of water initially present in the sample.  相似文献   
994.
Hydrogenated nanocrystalline silicon (nc-Si:H) thin films were deposited using HW-CVD technique at various deposition pressures. Characterisation of these films from Raman spectroscopy revealed that nc-Si:H thin films consist of a mixture of two phases, crystalline phase and amorphous phase containing small Si crystals embedded therein. We observed increase in crystallinity in the films with increase in deposition pressure whereas the size of Si nanocrystals was found ∼2 nm over the entire range of deposition pressure studied. The FTIR spectroscopic analysis showed that with increasing deposition pressure the predominant hydrogen bonding in the films shifts from, Si-H to Si-H2 and (Si-H2)n complexes and the hydrogen content in the films was found in the range 6.2-9.3 at% over the entire range of deposition pressure studied. The photo and dark conductivities results also indicate that the films deposited with increasing deposition pressure get structurally modified. It has been found that the optical energy gap range was between 1.72 and 2.1 eV with static refractive index between 2.85 and 3.24. From the present study it has been concluded that the deposition pressure is a key process parameter to induce the crystallinity in the Si:H thin films using HW-CVD.  相似文献   
995.
The single crystal of Sb3+ and V3+ doped zinc chromium selenide spinel ZnCr2Se4 were prepared by a chemical transport method and characterized by ESR spectroscopy in order to examine the effect of nonmagnetic antimony and magnetic vanadium on properties of the system. For antimony admixtures the Neel temperature is very similar to that of the parent spinel ZnCr2Se4 (22 K). However, upon incorporating vanadium ions, the TN temperature decreases down to 17.5 K, determined for the maximum vanadium content (x=0.06). The temperature dependence of the ESR linewidth over paramagnetic region is interpreted by an occurrence of spin-phonon interaction. The strong broadening linewidth together with its strong temperature dependence for vanadium doped ZnCr2Se4 is explained by the complex paramagnetic relaxation model.  相似文献   
996.
We theoretically studied the phase transformation, electronic and elastic properties of Ti3SiC2 ceramic by using the pseudopotential plane-wave method within the density functional theory. Our results demonstrate that there exists a structural phase transition from αTi3SiC2 to βTi3SiC2 under pressure up to 384 GPa, and αTi3SiC2 is the most stable phase at zero pressure. The calculated electronic band structure and density of states reveal the metallic behavior for the polymorphs of Ti3SiC2. The mechanical stability of αTi3SiC2 at zero pressure is confirmed by the elastic constants, and is analyzed in terms of electronic level. By analyzing the ratio between bulk and shear moduli, we conclude that αTi3SiC2 is brittle in nature.  相似文献   
997.
Structures of carbon monoxide layers on the oxygen-modified Mo(1 1 0) and Mo(1 1 2) surfaces have been investigated by means of density-functional (DFT) calculations. It is found that CO molecules adsorb at hollow sites on the O/Mo(1 1 0) surface and nearly atop Mo atoms on the O/Mo(1 1 2) surface. The favorable positions for adsorption are shown to be near protrusions of electron density above the Mo surface atoms. The presence of oxygen on the molybdenum surface significantly reduces the binding energy of the CO molecule with the substrate; on the oxygen-saturated Mo(1 1 0) surface, the adsorption of CO is completely blocked. The calculated local densities of states (LDOS) demonstrate that the O 2s peak for O adsorbed on Mo(1 1 0) surface is at −19 eV (with respect to the Fermi level), while for the oxygen atom of an adsorbed CO molecule the related 3σ molecular orbital gives rise to a peak at −23 eV. This difference stems from the bonding of the O atom either with Mo surface for adsorbed O or with C atom in adsorbed CO, and therefore the position of the O 2s peak in photoemission spectra can serve as a convincing argument in favor of either the presence or absence of the CO dissociation on Mo surfaces.  相似文献   
998.
Nanosized zinc oxide has been synthesized through a novel single step solution combustion route using citric acid as fuel. The X-ray diffraction (XRD) analysis revealed that the synthesized ZnO nanopowder has the pure wurtzite structure. The phase purity of the nanopowder has been confirmed using differential thermal analysis (DTA), thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FT-IR). The morphology and crystalline size of the as-prepared nanopowder characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed that the powder consisted of a mixture of nanoparticles and nanorods. The nanocrystalline ZnO could be sintered to ∼97% of the theoretical density at 1200 °C in 4 h. The dielectric constant (εr) and dielectric loss (εi) of sintered ZnO pellets at 5 MHz were 1.38 and 9×10−2, respectively, at room temperature.  相似文献   
999.
The structural and vibrational properties of the isostructural compounds Ca2FeH6 and Sr2RuH6 are determined by periodic DFT calculations and compared with their previously published experimental crystal structures as well as new experimental vibrational data. The analysis of the vibrational data is extended to the whole series of alkaline-earth iron and ruthenium hydrides A2TH6 (A=Mg, Ca, Sr; T=Fe, Ru) in order to identify correlations between selected frequencies and the T-H bond length. The bulk moduli of Ca2FeH6 and Sr2RuH6 have also been determined within DFT. Their calculated values prove to compare well with the experimental values reported for Mg2FeH6 and several other compounds of this structure.  相似文献   
1000.
Ultralong mesoporous TiO2-B nanowires were synthesized via a hybrid hydrothermal-ion exchanging-thermal treatment using tetrabutyl titanate (TBOT) as a raw material. The phase transformations and porous structures of TiO2-B nanowires were characterized and studied by X-ray diffraction (XRD), transmission electron microscopy (TEM) and N2 adsorption-desorption measurement. Mesoporous TiO2-B nanowires showed a length of several micrometers and diameter of about 25 nm. The porous structures of obtained TiO2-B nanowires were demonstrated by BJH pore distribution measurement. The wirelike morphologies and porous structures of monodisperse nanowires calcined at 600 °C showed little change, which indicated that such nanowires possessed high thermal stability. The formation mechanism of TiO2-B nanowires with mesoporous structures were also discussed based on our experimental results.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号