首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10734篇
  免费   4067篇
  国内免费   5118篇
化学   7348篇
晶体学   332篇
力学   1643篇
综合类   325篇
数学   922篇
物理学   9349篇
  2024年   83篇
  2023年   364篇
  2022年   433篇
  2021年   418篇
  2020年   366篇
  2019年   432篇
  2018年   322篇
  2017年   430篇
  2016年   451篇
  2015年   517篇
  2014年   912篇
  2013年   760篇
  2012年   795篇
  2011年   846篇
  2010年   865篇
  2009年   953篇
  2008年   971篇
  2007年   894篇
  2006年   972篇
  2005年   765篇
  2004年   784篇
  2003年   766篇
  2002年   749篇
  2001年   680篇
  2000年   488篇
  1999年   424篇
  1998年   413篇
  1997年   448篇
  1996年   378篇
  1995年   366篇
  1994年   320篇
  1993年   287篇
  1992年   278篇
  1991年   235篇
  1990年   232篇
  1989年   228篇
  1988年   94篇
  1987年   72篇
  1986年   48篇
  1985年   37篇
  1984年   22篇
  1983年   10篇
  1982年   9篇
  1979年   1篇
  1959年   1篇
排序方式: 共有10000条查询结果,搜索用时 50 毫秒
91.
研究高活性和稳定性的非贵金属基析氢催化剂对解决当前能源危机和环境污染问题具有重要意义.碳化钨具有与贵金属Pt类似的d带电子结构,因而成为一类新兴的非贵金属析氢催化剂,受到广泛关注.磷掺杂是提高催化剂析氢活性的有效方法之一,然而目前最常见的构筑磷掺杂方法是使用多金属氧酸盐(POMs,如H3PW12O40),其固定的W/P原子比导致W2C中的掺杂浓度难以调控,并且磷掺杂主要是进入碳载体而不是碳化物本身,从而导致无法明确杂原子对其电催化析氢活性的贡献.本文采用植酸(PA)为磷源设计合成了可控磷掺杂W2C纳米颗粒,并探讨了催化剂组分、杂原子掺杂位置与析氢性能之间的关系.深入研究了磷掺杂碳化钨(WCP)的化学结构和析氢活性.与原始的W2C催化剂相比,WCP具有更高的本征活性、更快的电子转移速率和更多的活性位数量,并且在酸性和碱性条件下均表现出较好的析氢性能.特别是过电位为-200 mV时,WCP催化剂的本征活性在酸性和碱性条件下分别为0.07和0.56 H2 s-1,高出纯W2C(0.01和0.05 H2 S-1)数倍.同时,在电流密度为-10 mA cm-2时,优化后的WCP催化剂在酸性和碱性条件下的析氢过电位分别降低了96和88 mV.XPS及EDS元素分析结果表明,随磷源添加量增加,磷掺杂从碳化钨表面逐渐向内部扩散,进一步说明磷取代位置与析氢活性之间的构效关系,高浓度的表面磷取代可以加速质子捕获过程,从而显著提高其析氢活性,而过量的内部磷取代会破坏W2C结构,降低电子转移速率,从而导致析氢性能下降.利用密度泛函理论计算深入研究了WCP具有较好析氢性能的原因,与内部磷取代相比,表面磷取代会使碳化钨表现出更合适的氢吸附自由能,并且更加有效地降低了氢释放势垒,从而优化了析氢反应动力学.综上,本文为元素掺杂工艺提供了新的思路,同时研究了表面异质原子对析氢活性的关键作用,为该类催化材料的构效关系研究提供了新思路.  相似文献   
92.
准确理解金属大环配合物(如N4-Fe2+)体系的氧化还原化学性能,对氧还原反应(ORR)电催化剂的基础研究和合理设计具有重要意义.本文采用微波法将三种不同酞菁铁类金属大环配合物吸附在碳纳米管上,分别记为(NH2)4FePc@CNTs,(t-Bu)4FePc@CNTs和FePc@CNTs,考察了取代基对Fe3+/Fe2+氧化还原电位的影响,以及碱性介质中的氧还原反应催化活性.结果表明,FePc@CNTs,(t-Bu)4FePc@CNTs和(NH2)4FePc@CNTs的ORR起始电位分别为0.98,0.96和0.96 V,而半波电位(E1/2)由高到低的顺序为FePc@CNTs(E1/2=0.91 V),(t-Bu)4FePc@CNTs(E1/2=0.87 V),(NH2)4FePc@CNTs(E1/2=0.83 V).与20%Pt/C(E1/2=0.85 V)相比,FePc@CNTsFePc@CNTs具有优异的ORR性能.在活性、稳定性和耐甲醇性方面,FePc@CNTs复合材料比其他复合材料表现出更高的ORR性能.研究发现,FePc上的供电子基团可以显著改变N4-Fe2+活性位点的电子云密度,增加dz 2轨道(HOMO)的能量,并观察到Fe2+/Fe3+氧化还原电位显著向阴极方向移动.结果表明,取代基的高电子贡献能力降低了HOMO和LUMO(O2的杂轨道*-轨道)之间的电子耦合,从而降低了氧还原催化活性.因此,FePc框架外围的供电子基团对ORR不利.本文阐明了取代基电子效应-金属大环配合物氧化还原电位与ORR催化性能之间的关系,为ORR催化剂活性中心的构建和调控提供了借鉴.  相似文献   
93.
王自强  朱晨 《有机化学》2021,(2):859-860
传统的烯烃二芳基化主要手段是,先通过过渡金属催化的芳基亲电试剂与烯烃发生交叉偶联,然后再与芳基亲核试剂发生反应[1].但是这种反应策略存在原子经济性低及反应步骤多的缺点.因此急需发展一种高效、高原子经济性的合成方法来实现烯烃的二芳基化.2015年,Bunel/Lei课题组[2]报道了FeCl3/2,3-二氯-5,6-二氰基对苯醌(DDQ)催化条件下苯乙烯的1,2-二芳基化;2017年,Bao课题组[3]报道了Fe(OTf)3/DDQ催化条件下苯乙烯的1,2-二芳基化。  相似文献   
94.
运用多重态计算方法研究了在正八面体对称性的晶体场中Co2+离子的2p电子X射线L2,3吸收边光谱, 研究了Co2+离子和周围的配位离子之间的正八面体(Oh)晶体场效应和相应的电荷转移效应对于吸收光谱的影响. 系统讨论了在多重态计算中起作用的所有物理参数对CoO和CoCl2的X射线吸收光谱特性的特定影响及其物理机制. 将计算得出的光谱数据和同样具有Oh对称性结构Co2+离子的CoO和CoCl2实验光谱数据进行了对比, 在实验光谱数据中发现的特征被确定为来自不同自旋态, 并且光谱强度的变化与晶体场的强度相关, 揭示了其中包含的电荷转移效应. 本文为低对称性复杂系统的多重态计算提供了一个基础的参考标准, 可以适用于含有钴元素或其它过渡金属的复杂体系的X射线吸收光谱的理论计算.  相似文献   
95.
使用大规模自旋极化密度泛函理论计算研究了表面修饰和尺寸对金刚石纳米线(DNs)中氮空位(NV)色心的几何结构、 电子结构、 磁性和稳定性的影响. 理论上设计了几种不同的DNs, 这些DNs具有不同的表面修饰(干净、 氢化和氟化), 并且直径达数百个原子. 实验结果证明, 中性(NV0)和带1个负电荷(NV-)的NV色心的电子结构不受半导体表面修饰和DNs直径大小的影响, 但NV色心的稳定性对这两个因素具有不同的响应. 此外, 研究中还发现, 由于DNs中存在圆柱形表面电偶极子层, 对DNs中掺杂的NV-色心的稳定性, 表面改性诱导了不依赖尺寸的长程效应. 特别地, 对于n型氟化金刚石表面, 掺杂在DN中的NV-色心可以稳定存在, 而对于p型氢化表面, NV0则相对更稳定. 因此, 表面修饰为控制金刚石纳米线中的NV色心的电子结构和稳定性提供了一种精确有效的调控方法.  相似文献   
96.
97.
质子交换膜燃料电池(PEMFCs)电堆中阴极Pt基催化剂的高用量造成其成本居高不下,成为阻碍燃料电池汽车商业化推进的重要原因,因此开发低Pt、高活性的Pt基催化剂势在必行.Pt合金催化剂能够有效地降低Pt用量,并通过对合金颗粒的元素比例、晶面、粒径等实行精确调控,显著提升氧还原(ORR)催化活性.然而,目前常用的制备方法由于原料与制备成本高昂、过程复杂大都难以适应规模化生产需求.电化学方法通过控制施加的电流或电位控制晶体生长.在水体系中该方法已得到验证,但由于Pt化合物的热力学标准电极电位与过渡金属元素之间相差较大,且对于过渡金属来说,电负性大多小于铂,因此还原电位通常负于析氢电位,使得二者难以实现共沉积.有机体系中电位窗口比水体系大得多,Pt与电位较负的过渡金属可实现共沉积,采用小分子有机溶剂也可避免溶剂清洗问题,具有应用潜力.本文提出了一种简单的一步电沉积方法,选择易溶于水的N,N-二甲基甲酰胺(DMF)作为溶剂,将碳载体滴涂到玻碳电极上作为工作电极,通过电化学方法直接将Pt-Ni合金沉积到碳载体上,并利用物化表征与密度泛函理论(DFT)理论计算来探究共沉积机理.透射电镜表征结果表明,在不同的沉积电位下均可得到分散均匀、粒径适当的催化剂;且随着电位值降低,催化剂颗粒分散得更均匀,颗粒粒径不断减小.元素分布和晶面结果表明,铂镍元素均匀分布于颗粒中.所有样品均表现出优异的ORR性能,最高的面积比活性达到商业催化剂的6.85倍.将材料表征、电化学表征与DFT计算结合,建立起了铂镍合金生长过程的模型,并发现了有机体系中独特的成核-生长机理.将体系中的DMF换成超纯水,用同样的方法进行沉积,得到的催化剂颗粒团聚严重,说明DMF的使用能够避免颗粒团聚.在单独铂的体系中沉积发现,负载量极小,表明体系中镍前驱体的添加对于催化剂的沉积过程起到重要作用.电化学表征结果表明,在所选用的DMF有机体系中,镍的还原电位与铂的十分接近,但还原动力学更慢,趋向于先形成吸附原子后快速还原.由此可以推测,在二者合金的形成过程中,镍在碳载体表面的缓慢还原而形成的吸附原子能够成为铂还原的活性位点,从而降低了铂还原成核所需的能量,使得载体上的成核位点大大增加,这与DFT模拟结果一致.DFT建立了碳上镍的位点和铂的位点,分别在上面进行铂的还原,发现镍位点上比铂位点上更容易实现铂沉积.本文提出了铂镍共沉积的机理:在过电位(即还原能量)下,铂的还原动力学较镍稍快,于是铂先还原形成晶核,但难以达到生长的临界半径,于是单独铂体系中的沉积负载量很少.载体上还原的镍为铂还原提供了大量的活性位点,促进了铂还原,并与镍共沉积.Pt-Ni表面则进一步促进了铂的沉积和颗粒的生长.综上,本文提出了一种用于制备铂合金催化剂的有机电沉积体系,实现了单分散的碳载铂镍合金催化剂的一步制备.随后,本文将材料表征、电化学表征与DFT计算相结合,建立起了有机体系中铂镍合金成核-生长过程的机理模型.  相似文献   
98.
在碱性甘油电氧化反应中,利用电化学傅里叶变换衰减全反射谱红外光谱法,研究了薄膜流动池中滴注硼酸镍催化剂负载量对玻碳电极性能的影响.连续操作的径向流动池包括一个位于内反射元件上方50μm的钻孔电极,可实现红外光谱分析.这是在确定条件下对电催化剂进行简便和可重复筛选的一个适合的方法,同时还提供了对复杂反应(如甘油氧化)产物选择性的检测.通过对泵送电解液进行更耗时的定量高效液相色谱分析,结果表明,衰减全反射红外光谱法可快速鉴定产物.在层流条件下,水中使用0.1 M甘油和1 M KOH,流速为5μL min-1时,甘油转化率较高.转化率和选择性取决于催化剂的负载量,负载量又决定了催化剂层的厚度和粗糙度.由于在更粗糙的膜中停留时间更长有利于再吸附和C-C键断裂,因此当负载量最高达210μg cm-2时,甘油转化率为73%且甲酸选择性接近80%.当最低负载量为13μg cm-2时,甘油转化率达到63%,甲酸选择性降至60%,相应地,C2物种(如乙醇酸盐)选择性较高,为8%.因此,只有催化剂负载量较低时才能形成几微米厚度范围内的薄膜,此时才适合进行优质催化剂的筛选.  相似文献   
99.
蒋军生  韦何磊  谭爱东  司锐  张伟德  余宇翔 《催化学报》2021,42(5):753-761,中插1-中插4
单原子催化剂凭借其超高的原子利用率及在某些反应中表现出的出色催化效果,被认为是最有前途的电催化剂之一,引起了研究人员的极大热情和兴趣.制备高金属含量的单原子催化剂是基础研究和实际应用的前提和关键.然而,由于原子表面自由能随着尺寸的减小而急剧增加,在制备和催化过程中,单原子催化剂的金属原子很容易聚集成团簇甚至颗粒,因此如何制备高负载量的单原子催化剂仍然是一个不小的挑战.在众多单原子催化剂中,非贵金属中铁基单原子被认为是燃料电池中的Pt催化剂的有效替代品.在燃料电池的核心反应–电化学氧还原反应中,Fe-Nx被证明是铁单原子催化剂中的主要活性中心.因此,为了获得更好的氧还原性能,提高铁单原子催化剂中Fe-Nx的含量就显得非常关键.前期已报道了一些关于制备高Fe含量的铁单原子催化剂材料的策略,例如空间限域策略和配位合成策略.其中卟啉和葡萄糖作为配位剂,双氰胺和三聚氰胺可热解成氮掺杂碳材料以捕获金属原子,形成M-Nx.同时,具有高比表面积的富氧碳载体可以通过掺杂氮来作为固定金属原子的位点.我们开发了一种简单直接的方法,通过碳辅助金属配合物热解法制备高金属含量的Fe-N4单原子催化剂,即在最佳碳化温度800℃、三聚氰胺存在下对氮掺杂多孔碳辅助分散铁邻苯二胺配合物进行热解.在该方法中,氮掺杂多孔碳是一种具有丰富氮缺陷,高表面积(1267 m2?g–1)和良好分散性的多孔生物质碳材料.邻苯二胺作为含两个氨基的二齿配体,可以很容易地与过渡金属配位,形成稳定的平面四配位络合物.此外,由于在高温条件下过渡金属的催化作用,邻苯二胺也被用作氮掺杂碳的前体.因此,氮掺杂多孔碳和邻苯二胺是合成高金属含量铁单原子催化剂的关键前驱体.通过X射线光电子能谱,大角度环形暗场扫描透射电子显微镜和X射线吸收精细结构光谱表征,发现所制备的铁单原子催化剂中铁原子以单个原子的形式锚固在碳载体上,并与碳基质的四个掺杂氮原子配位,得到Fe-N4的构型.通过调节Fe前驱体量,铁单原子催化剂中Fe的最高负载量达到7.5 wt%,在目前已经报道的铁单原子催化剂中排第四.电化学氧还原测试表明,在0.10 M KOH溶液中,随着铁含量的增加,铁单原子催化剂的氧还原性能逐渐提高.其中250Fe-SA/NPC-800样品表现出最高起始电位0.97 V和最正的半波电位0.85 V,可与市售的40%Pt/C催化剂相媲美.和已报道的铁单原子催化剂相比,由于我们制得的催化剂的比表面积较低,只有247 m2?g–1,所以制约了催化剂的性能.在混合动力学势域中,根据Koutecky-Levich方程计算得出的电子转移数约为3.6,表明250Fe-SA/NPC-800主要催化四电子转移过程,这可以归因于以Fe-N4活性中心降低了四电子过程中关键中间体的形成能垒及过程的自由能变化.此外,250Fe-SA/NPC-800展现了较高的电化学稳定性.连续工作6 h后,250Fe-SA/NPC-800保留了超过87%的电流密度,而Pt/C表现出明显的衰减,仅保留了49%.  相似文献   
100.
吴丽文  王玮  黄逸凡 《电化学》2021,27(2):208-215
镍(Ni)电极在电化学中应用广泛。原位表征Ni电极表面的吸附物种有益于帮助理解电极反应历程、指导发展高效电催化剂。应用超微电极作为工作电极的电化学表面增强拉曼光谱技术结合了超微电极表面的传质特性和分子水平的高灵敏度表征,是研究Ni电化学的有力手段。本文所述的研究工作通过在金(Au)超微电极表面电吸附具有SERS活性的Au纳米粒子并恒电流沉积金属Ni薄层,制备并表征了具有SERS活性的Ni超微电极。在氢氧化钠溶液中的循环伏安实验和以4-甲基苯硫酚分子作为探针分子的SERS实验结果表明,沉积速率和沉积电量是影响超微电极表面Ni的覆盖度和SERS活性的关键因素。在吸附了直径为55 nm Au纳米粒子的、直径为10 μm Au的超微电极表面,以100 μA·cm-2电流密度电沉积厚度约为5个原子层Ni的条件下,可获得Ni覆盖完好的、具有最强SERS活性的Ni超微电极。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号