首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10791篇
  免费   1356篇
  国内免费   425篇
化学   11858篇
晶体学   44篇
力学   125篇
综合类   8篇
数学   19篇
物理学   518篇
  2024年   2篇
  2023年   65篇
  2022年   104篇
  2021年   183篇
  2020年   396篇
  2019年   338篇
  2018年   295篇
  2017年   469篇
  2016年   680篇
  2015年   570篇
  2014年   598篇
  2013年   973篇
  2012年   767篇
  2011年   730篇
  2010年   689篇
  2009年   763篇
  2008年   750篇
  2007年   742篇
  2006年   635篇
  2005年   577篇
  2004年   544篇
  2003年   353篇
  2002年   251篇
  2001年   153篇
  2000年   57篇
  1999年   72篇
  1998年   60篇
  1997年   75篇
  1996年   63篇
  1995年   99篇
  1994年   104篇
  1993年   105篇
  1992年   108篇
  1991年   46篇
  1990年   24篇
  1989年   23篇
  1988年   20篇
  1987年   15篇
  1986年   16篇
  1985年   10篇
  1984年   12篇
  1983年   5篇
  1982年   11篇
  1981年   7篇
  1979年   4篇
  1978年   1篇
  1977年   2篇
  1975年   2篇
  1974年   2篇
  1972年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
In this work, we investigate the influence of the amide solvent chemical structure on the properties of poly(3‐hexylthiophene) (P3HT) prepared via direct arylation polymerization (DArP). Our findings indicate that for successful polymerization the amide must possess an acyclic aliphatic structure since cyclization of an amide results in a complete shutdown of DArP reactivity as evidenced by failed polymerization in N‐methylpyrrolidone, whereas the presence of an aromatic motif renders the amide solvent susceptible to C? H activation and leads to incorporation of the solvent structure into the P3HT backbone, as demonstrated on the example of N,N‐diethylbenzamide. Additionally, we observed that the steric bulk of alkyl substituents on both the nitrogen atom and the carbonyl group within the amide structure has to be delicately balanced for optimal DArP reactivity. In the optimal cases, P3HT is obtained in high yield, with high molecular weight and contains a minimal amount of structural defects. The obtained polymer samples were comprehensively studied in terms of their chemical structure, optical, thermal and solid‐state properties in thin films using GPC analysis, 1H NMR, MALDI, UV–vis, GIXRD spectroscopy, and DSC. We additionally note a drastic difference of the amide solvent effect between DArP and Stille polymerization. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2494–2500  相似文献   
92.
The use of selective interactions between conjugated polymers and single‐walled carbon nanotubes has emerged as a promising method for the separation of nanotubes by electronic type. Although much attention has been devoted to investigating polyfluorenes and their ability to disperse semiconducting carbon nanotubes under specific conditions, other polymer families, such as poly(2,7‐carbazole)s, have been relatively overlooked. Poly(2,7‐carbazole)s have been shown to also preferentially interact with semiconducting carbon nanotubes, however a detailed investigation of polymer parameters, such as molecular weight, has not been performed. We have prepared seven different molecular weights of a poly(2,7‐carbazole), from short chain oligomers to high molecular weight polymers, and have investigated their effectiveness at dispersing semiconducting single‐walled carbon nanotubes. Although all polymer chain lengths were able to efficiently exfoliate carbon nanotube bundles using a mild dispersion protocol, only polymers above a certain threshold molecular weight (Mn ~ 27 kDa) were found to exhibit complete selectivity for semiconducting nanotubes, with no observable signals from metallic species. Additionally, we found the quality of separation to be strongly dependent on the ratio of polymer to carbon nanotube. Contrary to previous reports, we have found that an excess of poly(2,7‐carbazole) leads to incomplete removal of metallic carbon nanotubes. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2510–2516  相似文献   
93.
Redox‐active polymers draw significant attention as active material in secondary batteries during the last decade. A new anthraquinone‐based redox‐active monomer was designed, which electrochemical behavior was tailored by mono‐modification of one keto group. The monomer exhibits two one‐electron redox reactions and has a low molar mass, resulting in a high theoretical capacity of 207 mAh/g. The polymerization of the monomer was optimized by variation of solvent and initiator. Moreover, the electrochemical behavior was studied using cyclic voltammetry and the polymer was used as active material in a composite electrode in lithium organic batteries. The polymer reveals a cell potential of 2.3 V and a promising capacity of 137 mAh/g. During the first 100 cycles, the capacity drops to 85% of the initial value. The influence of the charging speed on the charging/discharging properties of the batteries was further investigated. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2517–2523  相似文献   
94.
Transparent [90% transmittance at 550 nm at a sheet resistance (Rs) of 279 Ω sq?1] poly(3,4‐ethylenedioxythiophene) (PEDOT) films with electrical conductivities up to 1354 S cm?1 are prepared using base‐inhibited vapor phase polymerization at atmospheric pressure. The influence of reaction conditions, such as temperature and growth time, on the film formation is investigated. A simple and convenient two‐electrode method is used for the in situ measurement of resistance, enabling to investigate the growth mechanism of polymer films and the influence of different parameters (relative humidity and the amount of oxidant) on the film growth. Low humidity exerts a detrimental effect on film growth and conductivity. In situ Rs measurements suggest that a large structural change occurs upon washing the PEDOT‐oxidant film. © 2014 Wiley Periodicals, Inc. J Polym Sci Part B: Polym. Phys. 2014 , 52, 561–571  相似文献   
95.
Thiol‐responsive micelles consisting of novel nonionic gemini surfactants with a cystine disulfide spacer are reported. The gemini surfactants, (C18‐Cys‐mPEG)2 and ((C18)2‐Lys‐Cys‐mPEG)2, were synthesized from polyethylene glycol, cysteine, and stearic acid, and their structures were confirmed by 1H NMR and gel permeation chromatography. (C18‐Cys‐mPEG)2 and ((C18)2‐Lys‐Cys‐mPEG)2 formed micelles with average diameters of 13 and 22 nm above the critical micelle concentration of 6.5 and 4.7 µg mL?1, respectively. The micelles of ((C18)2‐Lys‐Cys‐mPEG)2 containing more stearoyl groups showed encapsulated more hydrophobic indomethacin (IMC) with higher entrapment efficiencies than those of (C18‐Cys‐mPEG)2. The gemini surfactant micelles exhibited an accelerated release of encapsulated IMC with the concentration of the reducing agent, glutathione (GSH), whereas they were unaffected by the presence of reduced GSH (GSSG). The 3‐(4,5‐dimethylthiazol‐2‐yl)‐5‐(3‐carboxymethoxyphenyl)?2‐(4‐sulfophenyl)?2H‐tetrazolium studies revealed the noncytotoxic nature of the gemini surfactant micelles. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 582–589  相似文献   
96.
Conjugated polymers containing phenyl‐, pyridyl‐, and thiazolyl‐flanked diketopyrrolopyrrole (DPP) were synthesized by direct arylation polycondensation of 3,4‐ethylenedioxythiophene derivatives and dibrominated DPP‐based monomers, in order to probe the effects of the aromatic groups in the DPP units on the absorption property, energy level, and crystallinity. A polymer possessing thiazolyl‐flanked DPP units was found to display long‐wavelength absorption properties and higher crystallinity than the polymers bearing phenyl‐ and pyridyl‐flanked DPP units. These features of the thiazolyl‐based polymer were afforded by its coplanar structure of the main chain. The synthesized polymers showed semiconducting properties in organic field effect transistors and organic photovoltaics. Direct arylation polycondensation is an efficient synthetic method that affords a series of DPP‐based polymers in a simple fashion and, thus, helping in a comprehensive understanding on the relationship between the aromatic groups in DPP units and their physical properties. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2337–2345  相似文献   
97.
We show that [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) at the surface of thin film blends of poly(3-hexylthiophene) (P3HT):PC61BM can be patterned by water. Using a series of heating and cooling steps, water droplets condense onto the blend film surface. This is possible due to the liquid-like, water swollen layer of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate. Breath pattern water deformation and subsequent drying on the film surface results in isolated PC61BM structures, showing that migration of PC61BM takes place. This was confirmed by selective wavelength illumination to spatially map the photoluminescence from the P3HT and PC61BM. Within a device, redistribution of the surface PC61BM into aggregates would be catastrophic, as it would markedly alter device performance. We also postulate that repeated volume change of the poly(3,4-ethylenedioxythiophene) polystyrene sulfonate layer by water swelling may be, in part, responsible for the delamination failure mechanism in thin film solar cells devices. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016, 54, 141–146  相似文献   
98.
Self-healing materials exhibit the ability to repair and to recover their functionality upon damage. Here, we report on an investigation into preparation and characterization of shape memory assisted self-healing coatings. We built on past work in which poly(ε-caprolactone) electrospun fibers were infiltrated with a shape memory epoxy matrix and delve into fabricating and characterizing a coating with the same materials, but employing a blending approach, polymerization induced phase separation. After applying controlled damage, the ability of both coatings to self-heal upon heating was investigated. In both methods, coatings showed excellent thermally induced crack closure and protection against corrosion, with the blend approach being more suitable for large-scale applications given its process simplicity. Two different approaches to the preparation of shape memory-based self-healing coatings were compared for their ability to heal structurally and functionally by heating. These two approaches, electrospinning versus polymerization-induced phase separation were found to feature comparable and quite complete healing, with the latter system offering the advantage of facile processing. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1415–1426  相似文献   
99.
A series of thermoresponsive polypeptides bearing 1‐butyl, 1‐hexyl, or 1‐dodecyl side‐chains (i.e., 6a ‐ 6c ) were synthesized by copper‐mediated 1,3‐dipolar cycloaddition with high grafting efficiency (>95%) between side‐chain “clickable” polypeptide, namely poly(γ‐4‐(propargoxycarbonyl)benzyl‐L‐glutamate) ( 5 ) and 1‐azidoalkanes. 5 with different degree of polymerization (DP = 48–86) were prepared from triethylamine initiated ring‐opening polymerization of γ‐4‐(propargoxycarbonyl)benzyl‐L‐glutamic acid based N‐carboxyanhydride ( 4 ). 1H NMR, FTIR, and GPC results revealed the successful preparation of the resulting polypeptides. 6a ‐ 6c showed reversible UCST‐type phase behaviors in methanol, ethanol, and ethanol/water solvent mixtures depending on the polymer main‐chain length, alkyl side‐chain length, weight percentage of ethanol (fw) in the binary solvent, and so forth. FTIR analysis revealed the presence of the van der Waals interaction between the alkyl pendants of polypeptides and alkyl groups of alcoholic solvents. Variable‐temperature UV‐vis spectroscopy revealed that the UCST‐type phase transition temperature (Tpt) increased as polymer main‐chain length or concentration increased. In ethanol/water solvent mixtures, polypeptide with short alkyl pendant (i.e., 1‐butyl group) and short main‐chain length (DP = 41) showed the widest fw range and Tpts in the range of 61.0–71.1 °C. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3425–3435  相似文献   
100.
Taking advantage of the structural diversity of different biomass resources, recent efforts were directed towards the synthesis of renewable monomers and polymers, either for the substitution of petroleum‐based resources or for the design of novel polymers. Not only the use of biomass, but also the development of sustainable chemical approaches is a crucial aspect for the production of sustainable materials. This review discusses the recent examples of chemical modifications and polymerizations of abundant biomass resources with a clear focus on the sustainability of the described processes. Topics such as synthetic methodology, catalysis, and development of new solvent systems or greener alternative reagents are addressed. The chemistry of vegetable oil derivatives, terpenes, lignin, carbohydrates, and sugar‐based platform chemicals was selected to highlight the trends in the active field of a sustainable use of renewable resources.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号