首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   162篇
  免费   7篇
  国内免费   10篇
化学   150篇
晶体学   1篇
力学   1篇
综合类   2篇
数学   3篇
物理学   22篇
  2024年   1篇
  2023年   6篇
  2022年   9篇
  2021年   14篇
  2020年   11篇
  2019年   8篇
  2018年   5篇
  2017年   15篇
  2016年   5篇
  2015年   2篇
  2014年   3篇
  2013年   9篇
  2012年   10篇
  2011年   8篇
  2010年   15篇
  2009年   8篇
  2008年   9篇
  2007年   5篇
  2006年   11篇
  2005年   8篇
  2004年   4篇
  2003年   5篇
  2002年   1篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
排序方式: 共有179条查询结果,搜索用时 15 毫秒
91.
A Fourier transform infrared (FT-IR) spectroscopy based gas sensor for continuous analysis of liquid phase samples has been developed, coupling a short hollow waveguide (HWG) gas cell with a supported capillary membrane sampler (SCMS) probe. Passing an inert carrier gas through the thin-walled tubular silicon membrane enables the permeation of volatile organic compounds (VOCs) present in aqueous solution and facilitates their continuous and quantitative detection in the infrared hollow fiber by multiple internal reflection spectroscopy. The sensitivity of the sensor system has been determined at the ppb (μg/L) concentration level and the response time ranges from few minutes to 30 min, depending on the analyte and the permeation properties of the sampling membrane.

The experimental set-up consists of Bruker Vector 22 FT-IR spectrometer with an externally aligned 50 cm long silica HWG coupled to the SCMS, which is immersed into a glass flask filled with analyte solution and kept under constant stirring.

Aqueous solutions of benzene, toluene, xylene isomers and chloroform were qualitatively and quantitatively analyzed confirming the feasibility of this sensor approach for environmental analysis.  相似文献   
92.
Summary A series of metal loaded zeolite catalysts (Pd/H-ZSM-5, Pd/H-BETA, Pt/H-ZSM-5, and Pt/H-BETA) were investigated for their activity and selectivity during oxidation of different chlorinated hydrocarbons, namely dichloromethane and trichloroethylene, at constant gas space velocity (15,000 h-1) and constant chlorohydrocarbon concentration (1,000 ppm in dry air). It was observed that the two noble metals played a major role in influencing the catalytic performance for complete oxidation of both chlorinated compounds. The acidic properties of the zeolite support in combination with increased oxygen activation owing to the noble metal were responsible for the high chlorocarbon destruction activity exhibited by this type of catalysts.  相似文献   
93.
The permeation and separation characteristics of volatile organic compounds (VOCs), such as chloroform, benzene, and toluene, from water by pervaporation through cross-linked poly(dimethylsiloxane) membranes prepared from poly(dimethylsiloxane) dimethylmethacrylate macromonomer (PDMSDMMA) and divinyl compounds, such as ethylene glycol dimethylmethacrylate (EGDM), divinyl benzene (DVB), divinyl siloxane (DVS), and divinyl perfluoro-n-hexane (DVF) are described. When aqueous solutions containing 0.05 wt.% VOCs were permeated through cross-linked PDMSDMMA membranes, these membranes showed high VOC/water selectivity and permeability. Both VOC/water selectivity and permeability were affected significantly by the divinyl compound. Furthermore cross-linked PDMSDMMA membranes showed the highest chloroform/water selectivity. The VOC/water selectivity was mainly governed by the sorption selectivity rather than the diffusion selectivity. However, the difference in the selectivity between different types of VOCs depended on differences in the diffusivity of permeants. With increasing downstream pressure, the VOC/water selectivity of all cross-linked PDMSDMMA membranes increased, but the permeability decreased. A PDMSDMMA–DVF membrane exhibited a normalized permeation rate of 1.9 × 10−5 kg m/m2 h and a separation factor for chloroform/water of 4850, yielding a separation index of 9110. The pervaporation characteristics of the cross-linked PDMSDMMA membranes are discussed based on their chemical and physical structures as well as the chemical and physical properties of the permeants.  相似文献   
94.
Guo S  Liu S  Ma X  Yang C  Zhou S  Xia C 《色谱》2010,28(7):716-719
设计组装了炭阱吸附装置,并与气相色谱-质谱(GC-MS)联用测定了银杏叶和利马豆的挥发性有机物。采用炭阱吸附装置与固相微萃取(SPME)收集银杏叶的挥发性有机物,用GC-MS进行分析,结果表明采用炭阱吸附装置对银杏叶挥发性有机物的富集效果优于SPME方法。实验还采用内标法对利马豆的挥发性有机物进行了初步的定量,两次实验结果的重复性较好。由于炭阱吸附装置能够很好地收集植物的挥发性有机物,且可以进行多个样品的平行实验及植物挥发性有机物的定量研究,因此炭阱吸附装置与GC-MS联用更适合用于实验室中植物挥发性有机物的研究。  相似文献   
95.
Helicobacter pylori living in the human stomach release volatile organic compounds (VOCs) that can be detected in expired air. The aim of the study was the application of breath analysis for bacteria detection. It was accomplished by determination of VOCs characteristic for patients with H. pylori and the analysis of gases released by bacteria in suspension. Solid-phase microextraction was applied as a selective technique for preconcentration and isolation of analytes. Gas chromatography coupled with mass spectrometry was used for the separation and identification of volatile analytes in breath samples and bacterial headspace. For data calculation and processing, discriminant and factor analyses were used. Endogenous substances such as isobutane, 2-butanone and ethyl acetate were detected in the breath of persons with H. pylori in the stomach and in the gaseous mixture released by the bacteria strain but they were not identified in the breath of healthy volunteers. The canonical analysis of discrimination functions showed a strong difference between the three examined groups. Knowledge of substances emitted by H. pylori with the application of an optimized breath analysis method might become a very useful tool for noninvasive detection of this bacterium.  相似文献   
96.
VOCs污染控制技术与吸附催化材料   总被引:28,自引:0,他引:28  
简述了VOCs对环境和对人类健康的主要危害,介绍了常见的VOCs污染控制技术,包括回收技术和销毁技术,其中较详细地介绍了吸附法和催化燃烧法的特点及其进展,指出在吸附技术和催化技术里,吸附剂和催化剂扮演着重要角色,本文对这两类环境净化材料的进展和存在问题也作了相应的介绍。  相似文献   
97.
Biogenic Isoprene Emission Mechanism from ^13CO2 Exposure Experiments   总被引:1,自引:0,他引:1  
MinSHAO 《中国化学快报》2002,13(9):897-900
Biogenic isoprene emissions have been believed to be from only photosynthesis processes in plant. However nocturnal isoprene emission from pine is detected. And by feeding ^13CO2 to plants, it is found that both photosynthesis pathway and light independent processes contribute to isoprene emissions.  相似文献   
98.
A model describing odor causing volatile organic compounds (VOC-odor) transport in a ventilated airspace influenced by heterogeneity of adsorption surface of ambient aerosol and air mixing pattern is proposed and analyzed based on a transfer function modeling technique. In this study an advection–reaction impulse/step response function for VOC-odor is assumed. The system process presented by an ensemble transfer function is solved analytically in the Laplace domain. The analytical results are then numerically inverted using a modified fast Fourier transform algorithm. The model requires the specification of probability density function for residence time of airflow and for both equilibrium linear partitioning and first-order mass transfer rate parameters to quantify the specific air mixing pattern and transport processes. The model predicts the ensemble mean VOC-odor concentrations for a variety of adsorption kinetics and mixing pattern combinations as a function of the boundary impulse/step response inputs as well as residence time and adsorption rate statistics. The general behavior of output VOC-odor profiles is analyzed through the effects of mean adsorption rate coefficient, mean linear partitioning constant, mixing efficiency, mean residence time and coefficient of variations of both linear partitioning and rate coefficients. It indicates that when mixing/adsorption heterogeneity exists, simple complete mixing assumption and simple distribution of rate constant is inherently not sufficient to represent a more generally distributed mixing/adsorption process of VOC-odor transport in a ventilated airspace.  相似文献   
99.
Sorbent tubes/traps are widely used in combination with gas chromatographic (GC) analytical methods to monitor the vapour-phase fraction of organic compounds in air. Target compounds range in volatility from acetylene and freons to phthalates and PCBs and include apolar, polar and reactive species. Airborne vapour concentrations will vary depending on the nature of the location, nearby pollution sources, weather conditions, etc. Levels can range from low percent concentrations in stack and vent emissions to low part per trillion (ppt) levels in ultra-clean outdoor locations. Hundreds, even thousands of different compounds may be present in any given atmosphere. GC is commonly used in combination with mass spectrometry (MS) detection especially for environmental monitoring or for screening uncharacterised workplace atmospheres. Given the complexity and variability of organic vapours in air, no one sampling approach suits every monitoring scenario. A variety of different sampling strategies and sorbent media have been developed to address specific applications. Key sorbent-based examples include: active (pumped) sampling onto tubes packed with one or more sorbents held at ambient temperature; diffusive (passive) sampling onto sorbent tubes/cartridges; on-line sampling of air/gas streams into cooled sorbent traps; and transfer of air samples from containers (canisters, Tedlar® bags, etc.) into cooled sorbent focusing traps. Whichever sampling approach is selected, subsequent analysis almost always involves either solvent extraction or thermal desorption (TD) prior to GC(/MS) analysis. The overall performance of the air monitoring method will depend heavily on appropriate selection of key sampling and analytical parameters. This comprehensive review of air monitoring using sorbent tubes/traps is divided into 2 parts. (1) Sorbent-based air sampling option. (2) Sorbent selection and other aspects of optimizing sorbent-based air monitoring methods. The paper presents current state-of-the-art and recent developments in relevant areas such as sorbent research, sampler design, enhanced approaches to analytical quality assurance and on-tube derivatisation.  相似文献   
100.
张宇  张佳慧  刘诗鑫  赵震 《化学通报》2023,86(7):833-843
挥发性有机化合物(VOCs)对环境的严重污染和对人体的危害引起了人们的重视。冷等离子体与催化剂耦合形成的协同效应可显著提高VOCs低温转化速率,减少二次污染和降低能耗,具有较好的应用前景。协同催化效果主要取决于催化剂物化性能,可通过调控催化剂的组成、粒径和结构改善协同催化活性。锰基氧化物因其具有较高的储氧能力、稳定的晶体结构、较好的氧气活化性能和良好的抗中毒能力等优点而被广泛应用于冷等离子体协同催化净化VOCs的应用研究。通过金属离子掺杂调控锰基氧化物的离子价态、氧迁移率和氧气吸附量,是改善催化剂与等离子体协同催化性能主要方法。本文总结了近年来锰基氧化物与冷等离子体协同催化氧化VOCs的研究进展,主要包括氧化锰晶型、分散度和掺杂金属离子对协同催化氧化VOCs的活性影响趋势及反应机理。分析冷等离子体与锰基氧化物催化剂协同氧化VOCs中存在的问题并对其发展前景进行了展望。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号